Xuyang Ge


2023

pdf bib
Distilling Script Knowledge from Large Language Models for Constrained Language Planning
Siyu Yuan | Jiangjie Chen | Ziquan Fu | Xuyang Ge | Soham Shah | Charles Jankowski | Yanghua Xiao | Deqing Yang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In everyday life, humans often plan their actions by following step-by-step instructions in the form of goal-oriented scripts. Previous work has exploited language models (LMs) to plan for abstract goals of stereotypical activities (e.g., “make a cake”), but leaves more specific goals with multi-facet constraints understudied (e.g., “make a cake for diabetics”). In this paper, we define the task of constrained language planning for the first time. We propose an over-generate-then-filter approach to improve large language models (LLMs) on this task, and use it to distill a novel constrained language planning dataset, Coscript, which consists of 55,000 scripts. Empirical results demonstrate that our method significantly improves the constrained language planning ability of LLMs, especially on constraint faithfulness. Furthermore, Coscript is demonstrated to be quite effective in endowing smaller LMs with constrained language planning ability.

pdf bib
Beneath Surface Similarity: Large Language Models Make Reasonable Scientific Analogies after Structure Abduction
Siyu Yuan | Jiangjie Chen | Xuyang Ge | Yanghua Xiao | Deqing Yang
Findings of the Association for Computational Linguistics: EMNLP 2023

The vital role of analogical reasoning in human cognition allows us to grasp novel concepts by linking them with familiar ones through shared relational structures. Despite the attention previous research has given to word analogies, this work suggests that Large Language Models (LLMs) often overlook the structures that underpin these analogies, raising questions about the efficacy of word analogies as a measure of analogical reasoning skills akin to human cognition. In response to this, our paper introduces a task of analogical structure abduction, grounded in cognitive psychology, designed to abduce structures that form an analogy between two systems. In support of this task, we establish a benchmark called SCAR, containing 400 scientific analogies from 13 distinct fields, tailored for evaluating analogical reasoning with structure abduction. The empirical evidence underlines the continued challenges faced by LLMs, including ChatGPT and GPT-4, in mastering this task, signifying the need for future exploration to enhance their abilities.