Yan Liang


2023

pdf bib
Concept2Box: Joint Geometric Embeddings for Learning Two-View Knowledge Graphs
Zijie Huang | Daheng Wang | Binxuan Huang | Chenwei Zhang | Jingbo Shang | Yan Liang | Zhengyang Wang | Xian Li | Christos Faloutsos | Yizhou Sun | Wei Wang
Findings of the Association for Computational Linguistics: ACL 2023

Knowledge graph embeddings (KGE) have been extensively studied to embed large-scale relational data for many real-world applications. Existing methods have long ignored the fact many KGs contain two fundamentally different views: high-level ontology-view concepts and fine-grained instance-view entities. They usually embed all nodes as vectors in one latent space. However, a single geometric representation fails to capture the structural differences between two views and lacks probabilistic semantics towards concepts’ granularity. We propose Concept2Box, a novel approach that jointly embeds the two views of a KG using dual geometric representations. We model concepts with box embeddings, which learn the hierarchy structure and complex relations such as overlap and disjoint among them. Box volumes can be interpreted as concepts’ granularity. Different from concepts, we model entities as vectors. To bridge the gap between concept box embeddings and entity vector embeddings, we propose a novel vector-to-box distance metric and learn both embeddings jointly. Experiments on both the public DBpedia KG and a newly-created industrial KG showed the effectiveness of Concept2Box.

2022

pdf bib
Ask-and-Verify: Span Candidate Generation and Verification for Attribute Value Extraction
Yifan Ding | Yan Liang | Nasser Zalmout | Xian Li | Christan Grant | Tim Weninger
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track

The product attribute value extraction (AVE) task aims to capture key factual information from product profiles, and is useful for several downstream applications in e-Commerce platforms. Previous contributions usually formulate this task using sequence labeling or reading comprehension architectures. However, sequence labeling models tend to be conservative in their predictions resulting in a high false negative rate. Existing reading comprehension formulations, on the other hand, can over-generate attribute values which hinders precision. In the present work we address these limitations with a new end-to-end pipeline framework called Ask-and-Verify. Given a product and an attribute query, the Ask step detects the top-K span candidates (i.e. possible attribute values) from the product profiles, then the Verify step filters out false positive candidates. We evaluate Ask-and-Verify model on Amazon’s product pages and AliExpress public dataset, and present a comparative analysis as well as a detailed ablation study. Despite its simplicity, we show that Ask-and-Verify outperforms recent state-of-the-art models by up to 3.1% F1 absolute improvement points, while also scaling to thousands of attributes.

2021

pdf bib
AdaTag: Multi-Attribute Value Extraction from Product Profiles with Adaptive Decoding
Jun Yan | Nasser Zalmout | Yan Liang | Christan Grant | Xiang Ren | Xin Luna Dong
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Automatic extraction of product attribute values is an important enabling technology in e-Commerce platforms. This task is usually modeled using sequence labeling architectures, with several extensions to handle multi-attribute extraction. One line of previous work constructs attribute-specific models, through separate decoders or entirely separate models. However, this approach constrains knowledge sharing across different attributes. Other contributions use a single multi-attribute model, with different techniques to embed attribute information. But sharing the entire network parameters across all attributes can limit the model’s capacity to capture attribute-specific characteristics. In this paper we present AdaTag, which uses adaptive decoding to handle extraction. We parameterize the decoder with pretrained attribute embeddings, through a hypernetwork and a Mixture-of-Experts (MoE) module. This allows for separate, but semantically correlated, decoders to be generated on the fly for different attributes. This approach facilitates knowledge sharing, while maintaining the specificity of each attribute. Our experiments on a real-world e-Commerce dataset show marked improvements over previous methods.

2019

pdf bib
Relation Discovery with Out-of-Relation Knowledge Base as Supervision
Yan Liang | Xin Liu | Jianwen Zhang | Yangqiu Song
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Unsupervised relation discovery aims to discover new relations from a given text corpus without annotated data. However, it does not consider existing human annotated knowledge bases even when they are relevant to the relations to be discovered. In this paper, we study the problem of how to use out-of-relation knowledge bases to supervise the discovery of unseen relations, where out-of-relation means that relations to discover from the text corpus and those in knowledge bases are not overlapped. We construct a set of constraints between entity pairs based on the knowledge base embedding and then incorporate constraints into the relation discovery by a variational auto-encoder based algorithm. Experiments show that our new approach can improve the state-of-the-art relation discovery performance by a large margin.