We present the Uppsala system for the CoNLL 2018 Shared Task on universal dependency parsing. Our system is a pipeline consisting of three components: the first performs joint word and sentence segmentation; the second predicts part-of-speech tags and morphological features; the third predicts dependency trees from words and tags. Instead of training a single parsing model for each treebank, we trained models with multiple treebanks for one language or closely related languages, greatly reducing the number of models. On the official test run, we ranked 7th of 27 teams for the LAS and MLAS metrics. Our system obtained the best scores overall for word segmentation, universal POS tagging, and morphological features.
Word segmentation is a low-level NLP task that is non-trivial for a considerable number of languages. In this paper, we present a sequence tagging framework and apply it to word segmentation for a wide range of languages with different writing systems and typological characteristics. Additionally, we investigate the correlations between various typological factors and word segmentation accuracy. The experimental results indicate that segmentation accuracy is positively related to word boundary markers and negatively to the number of unique non-segmental terms. Based on the analysis, we design a small set of language-specific settings and extensively evaluate the segmentation system on the Universal Dependencies datasets. Our model obtains state-of-the-art accuracies on all the UD languages. It performs substantially better on languages that are non-trivial to segment, such as Chinese, Japanese, Arabic and Hebrew, when compared to previous work.
We present a character-based model for joint segmentation and POS tagging for Chinese. The bidirectional RNN-CRF architecture for general sequence tagging is adapted and applied with novel vector representations of Chinese characters that capture rich contextual information and lower-than-character level features. The proposed model is extensively evaluated and compared with a state-of-the-art tagger respectively on CTB5, CTB9 and UD Chinese. The experimental results indicate that our model is accurate and robust across datasets in different sizes, genres and annotation schemes. We obtain state-of-the-art performance on CTB5, achieving 94.38 F1-score for joint segmentation and POS tagging.
We extensively analyse the correlations and drawbacks of conventionally employed evaluation metrics for word segmentation. Unlike in standard information retrieval, precision favours under-splitting systems and therefore can be misleading in word segmentation. Overall, based on both theoretical and experimental analysis, we propose that precision should be excluded from the standard evaluation metrics and that the evaluation score obtained by using only recall is sufficient and better correlated with the performance of word segmentation systems.
We present the Uppsala submission to the CoNLL 2017 shared task on parsing from raw text to universal dependencies. Our system is a simple pipeline consisting of two components. The first performs joint word and sentence segmentation on raw text; the second predicts dependency trees from raw words. The parser bypasses the need for part-of-speech tagging, but uses word embeddings based on universal tag distributions. We achieved a macro-averaged LAS F1 of 65.11 in the official test run, which improved to 70.49 after bug fixes. We obtained the 2nd best result for sentence segmentation with a score of 89.03.