There has been a significant surge of interest in visually grounded grammar induction in recent times. While a variety of models have been developed for the task and have demonstrated impressive performance, they have not been evaluated on text domains that are different from the training domain, so it is unclear if the improvements brought by visual groundings are transferable. Our study aims to fill this gap and assess the degree of transferability. We start by extending VC-PCFG (short for Visually-grounded Compound PCFG [[Zhao and Titov, 2020](https://aclanthology.org/2020.emnlp-main.354/)]) in such a way that it can transfer across text domains. We consider a zero-shot transfer learning setting where a model is trained on the source domain and is directly applied to target domains, without any further training. Our experimental results suggest that: the benefits from using visual groundings transfer to text in a domain similar to the training domain but fail to transfer to remote domains. Further, we conduct data and result analysis; we find that the lexicon overlap between the source domain and the target domain is the most important factor in the transferability of VC-PCFG.
Machines that can represent and describe environmental soundscapes have practical potential, e.g., for audio tagging and captioning. Prevailing learning paradigms of audio-text connections have been relying on parallel audio-text data, which is, however, scarcely available on the web. We propose VIP-ANT that induces Audio-Text alignment without using any parallel audio-text data. Our key idea is to share the image modality between bi-modal image-text representations and bi-modal image-audio representations; the image modality functions as a pivot and connects audio and text in a tri-modal embedding space implicitly. In a difficult zero-shot setting with no paired audio-text data, our model demonstrates state-of-the-art zero-shot performance on the ESC50 and US8K audio classification tasks, and even surpasses the supervised state of the art for Clotho caption retrieval (with audio queries) by 2.2% R@1. We further investigate cases of minimal audio-text supervision, finding that, e.g., just a few hundred supervised audio-text pairs increase the zero-shot audio classification accuracy by 8% on US8K. However, to match human parity on some zero-shot tasks, our empirical scaling experiments suggest that we would need about 221 ≈ 2M supervised audio-caption pairs. Our work opens up new avenues for learning audio-text connections with little to no parallel audio-text data.
Neural lexicalized PCFGs (L-PCFGs) have been shown effective in grammar induction. However, to reduce computational complexity, they make a strong independence assumption on the generation of the child word and thus bilexical dependencies are ignored. In this paper, we propose an approach to parameterize L-PCFGs without making implausible independence assumptions. Our approach directly models bilexical dependencies and meanwhile reduces both learning and representation complexities of L-PCFGs. Experimental results on the English WSJ dataset confirm the effectiveness of our approach in improving both running speed and unsupervised parsing performance.
Probabilistic context-free grammars (PCFGs) with neural parameterization have been shown to be effective in unsupervised phrase-structure grammar induction. However, due to the cubic computational complexity of PCFG representation and parsing, previous approaches cannot scale up to a relatively large number of (nonterminal and preterminal) symbols. In this work, we present a new parameterization form of PCFGs based on tensor decomposition, which has at most quadratic computational complexity in the symbol number and therefore allows us to use a much larger number of symbols. We further use neural parameterization for the new form to improve unsupervised parsing performance. We evaluate our model across ten languages and empirically demonstrate the effectiveness of using more symbols.
Unsupervised parsing learns a syntactic parser from training sentences without parse tree annotations. Recently, there has been a resurgence of interest in unsupervised parsing, which can be attributed to the combination of two trends in the NLP community: a general trend towards unsupervised training or pre-training, and an emerging trend towards finding or modeling linguistic structures in neural models. In this tutorial, we will introduce to the general audience what unsupervised parsing does and how it can be useful for and beyond syntactic parsing. We will then provide a systematic overview of major classes of approaches to unsupervised parsing, namely generative and discriminative approaches, and analyze their relative strengths and weaknesses. We will cover both decade-old statistical approaches and more recent neural approaches to give the audience a sense of the historical and recent development of the field. We will also discuss emerging research topics such as BERT-based approaches and visually grounded learning.
Compound probabilistic context-free grammars (C-PCFGs) have recently established a new state of the art for phrase-structure grammar induction. However, due to the high time-complexity of chart-based representation and inference, it is difficult to investigate them comprehensively. In this work, we rely on a fast implementation of C-PCFGs to conduct evaluation complementary to that of (CITATION). We highlight three key findings: (1) C-PCFGs are data-efficient, (2) C-PCFGs make the best use of global sentence-level information in preterminal rule probabilities, and (3) the best configurations of C-PCFGs on English do not always generalize to morphology-rich languages.
Exploiting visual groundings for language understanding has recently been drawing much attention. In this work, we study visually grounded grammar induction and learn a constituency parser from both unlabeled text and its visual groundings. Existing work on this task (Shi et al., 2019) optimizes a parser via Reinforce and derives the learning signal only from the alignment of images and sentences. While their model is relatively accurate overall, its error distribution is very uneven, with low performance on certain constituents types (e.g., 26.2% recall on verb phrases, VPs) and high on others (e.g., 79.6% recall on noun phrases, NPs). This is not surprising as the learning signal is likely insufficient for deriving all aspects of phrase-structure syntax and gradient estimates are noisy. We show that using an extension of probabilistic context-free grammar model we can do fully-differentiable end-to-end visually grounded learning. Additionally, this enables us to complement the image-text alignment loss with a language modeling objective. On the MSCOCO test captions, our model establishes a new state of the art, outperforming its non-grounded version and, thus, confirming the effectiveness of visual groundings in constituency grammar induction. It also substantially outperforms the previous grounded model, with largest improvements on more ‘abstract’ categories (e.g., +55.1% recall on VPs).
We introduce Latent Vector Grammars (LVeGs), a new framework that extends latent variable grammars such that each nonterminal symbol is associated with a continuous vector space representing the set of (infinitely many) subtypes of the nonterminal. We show that previous models such as latent variable grammars and compositional vector grammars can be interpreted as special cases of LVeGs. We then present Gaussian Mixture LVeGs (GM-LVeGs), a new special case of LVeGs that uses Gaussian mixtures to formulate the weights of production rules over subtypes of nonterminals. A major advantage of using Gaussian mixtures is that the partition function and the expectations of subtype rules can be computed using an extension of the inside-outside algorithm, which enables efficient inference and learning. We apply GM-LVeGs to part-of-speech tagging and constituency parsing and show that GM-LVeGs can achieve competitive accuracies.