2025
pdf
bib
abs
Awakening Augmented Generation: Learning to Awaken Internal Knowledge of Large Language Models for Question Answering
Huanxuan Liao
|
Shizhu He
|
Yao Xu
|
Yuanzhe Zhang
|
Shengping Liu
|
Kang Liu
|
Jun Zhao
Proceedings of the 31st International Conference on Computational Linguistics
Retrieval-Augmented-Generation and Generation-Augmented-Generation have been proposed to enhance the knowledge required for question answering with Large Language Models (LLMs) by leveraging richer context. However, the former relies on external resources, and both require incorporating explicit documents into the context, which increases execution costs and susceptibility to noise data during inference. Recent works indicate that LLMs model rich knowledge, but it is often not effectively activated and awakened. Inspired by this, we propose a novel knowledge-augmented framework, Awakening-Augmented-Generation (AAG), which mimics the human ability to answer questions using only thinking and recalling to compensate for knowledge gaps, thereby awaking relevant knowledge in LLMs without relying on external resources. AAG consists of two key components for awakening richer context. Explicit awakening fine-tunes a context generator to create a synthetic, compressed document that functions as symbolic context. Implicit awakening utilizes a hypernetwork to generate adapters based on the question and synthetic document, which are inserted into LLMs to serve as parameter context. Experimental results on three datasets demonstrate that AAG exhibits significant advantages in both open-domain and closed-book settings, as well as in out-of-distribution generalization. Our code will be available at https://github.com/Xnhyacinth/IAG.
2024
pdf
bib
abs
Generate-on-Graph: Treat LLM as both Agent and KG for Incomplete Knowledge Graph Question Answering
Yao Xu
|
Shizhu He
|
Jiabei Chen
|
Zihao Wang
|
Yangqiu Song
|
Hanghang Tong
|
Guang Liu
|
Jun Zhao
|
Kang Liu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
To address the issues of insufficient knowledge and hallucination in Large Language Models (LLMs), numerous studies have explored integrating LLMs with Knowledge Graphs (KGs). However, these methods are typically evaluated on conventional Knowledge Graph Question Answering (KGQA) with complete KGs, where all factual triples required for each question are entirely covered by the given KG. In such cases, LLMs primarily act as an agent to find answer entities within the KG, rather than effectively integrating the internal knowledge of LLMs and external knowledge sources such as KGs. In fact, KGs are often incomplete to cover all the knowledge required to answer questions. To simulate these real-world scenarios and evaluate the ability of LLMs to integrate internal and external knowledge, we propose leveraging LLMs for QA under Incomplete Knowledge Graph (IKGQA), where the provided KG lacks some of the factual triples for each question, and construct corresponding datasets. To handle IKGQA, we propose a training-free method called Generate-on-Graph (GoG), which can generate new factual triples while exploring KGs. Specifically, GoG performs reasoning through a Thinking-Searching-Generating framework, which treats LLM as both Agent and KG in IKGQA. Experimental results on two datasets demonstrate that our GoG outperforms all previous methods.
pdf
bib
abs
MoDE-CoTD: Chain-of-Thought Distillation for Complex Reasoning Tasks with Mixture of Decoupled LoRA-Experts
Xiang Li
|
Shizhu He
|
Jiayu Wu
|
Zhao Yang
|
Yao Xu
|
Yang jun Jun
|
Haifeng Liu
|
Kang Liu
|
Jun Zhao
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Chain-of-thought Distillation (CoTD) aims at distilling Chain-of-thought (CoT) reasoning ability of large language models (LLMs) to much smaller student models. The core of CoTD is using a large teacher model to generate rationales and fine-tune smaller student models. However, current Chain-of-thought Distillation works have the following limitations: 1) Student models are separately distilled from specific reasoning tasks and lack a collaboration mechanism, hindering the enhancement of reasoning performance through collaboration among various reasoning tasks. 2) The parameter update of student models severely harms the CoT reasoning ability on other unseen reasoning tasks not included in the distillation process. In this work, we introduce a novel CoT Distillation method, MoDE-CoTD, which decouples the CoT reasoning abilities out of the student model by distilling multiple LoRA-Experts and freezing the parameters of the student model. Sequentially, LoRA-Experts are combined and adapted to handle both seen and unseen reasoning tasks, enabling collaboration among diverse reasoning tasks to further enhance CoT reasoning performance. Experimental results on 14 datasets (including 4 unseen datasets) demonstrate the strength of MoDE-CoTD, with an average accuracy gain of 6.3% on seen datasets and 7.8% on unseen datasets.
2023
pdf
bib
abs
Prediction and Calibration: Complex Reasoning over Knowledge Graph with Bi-directional Directed Acyclic Graph Neural Network
Yao Xu
|
Shizhu He
|
Li Cai
|
Kang Liu
|
Jun Zhao
Findings of the Association for Computational Linguistics: ACL 2023
Answering complex logical queries is a challenging task for knowledge graph (KG) reasoning. Recently, query embedding (QE) has been proposed to encode queries and entities into the same vector space, and obtain answers based on numerical computation. However, such models obtain the node representations of a query only based on its predecessor nodes, which ignore the information contained in successor nodes. In this paper, we proposed a Bi-directional Directed Acyclic Graph neural network (BiDAG) that splits the reasoning process into prediction and calibration. The joint probability of all nodes is considered by applying a graph neural network (GNN) to the query graph in the calibration process. By the prediction in the first layer and the calibration in deep layers of GNN, BiDAG can outperform previous QE based methods on FB15k, FB15k-237, and NELL995.
pdf
bib
abs
Query2Triple: Unified Query Encoding for Answering Diverse Complex Queries over Knowledge Graphs
Yao Xu
|
Shizhu He
|
Cunguang Wang
|
Li Cai
|
Kang Liu
|
Jun Zhao
Findings of the Association for Computational Linguistics: EMNLP 2023
Complex Query Answering (CQA) is a challenge task of Knowledge Graph (KG). Due to the incompleteness of KGs, query embedding (QE) methods have been proposed to encode queries and entities into the same embedding space, and treat logical operators as neural set operators to obtain answers. However, these methods train KG embeddings and neural set operators concurrently on both simple (one-hop) and complex (multi-hop and logical) queries, which causes performance degradation on simple queries and low training efficiency. In this paper, we propose Query to Triple (Q2T), a novel approach that decouples the training for simple and complex queries. Q2T divides the training into two stages: (1) Pre-training the neural link predictor on simple queries to predict tail entities based on the head entity and relation. (2) Training the query encoder on complex queries to encode diverse complex queries into a unified triple form that can be efficiently solved by the pretrained link predictor. Our proposed Q2T is not only efficient to train, but also modular, thus easily adaptable to various neural link predictors that have been studied well. Extensive experiments demonstrate that, even without explicit modeling for neural set operators, Q2T still achieves state-of-the-art performance on diverse complex queries over three public benchmarks.