Yaswanth Narsupalli
2024
VideoScore: Building Automatic Metrics to Simulate Fine-grained Human Feedback for Video Generation
Xuan He
|
Dongfu Jiang
|
Ge Zhang
|
Max Ku
|
Achint Soni
|
Sherman Siu
|
Haonan Chen
|
Abhranil Chandra
|
Ziyan Jiang
|
Aaran Arulraj
|
Kai Wang
|
Quy Duc Do
|
Yuansheng Ni
|
Bohan Lyu
|
Yaswanth Narsupalli
|
Rongqi Fan
|
Zhiheng Lyu
|
Bill Yuchen Lin
|
Wenhu Chen
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
The recent years have witnessed great advances in video generation. However, the development of automatic video metrics is lagging significantly behind. None of the existing metric is able to provide reliable scores over generated videos. The main barrier is the lack of large-scale human-annotated dataset. In this paper, we release VideoFeedback, the first large-scale dataset containing human-provided multi-aspect score over 37.6K synthesized videos from 11 existing video generative models. We train VideoScore (initialized from Mantis)based on VideoFeedback to enable automatic video quality assessment. Experiments show that the Spearman’s correlation betweenVideoScore and humans can reach 77.1 on VideoFeedback-test, beating the prior best metrics by about 50 points. Further result onother held-out EvalCrafter, GenAI-Bench, and VBench show that VideoScore has consistently much higher correlation with humanjudges than other metrics. Due to these results, we believe VideoScore can serve as a great proxy for human raters to (1) rate different video models to track progress (2) simulate fine-grained human feedback in Reinforcement Learning with Human Feedback (RLHF) to improve current video generation models.
2023
DepNeCTI: Dependency-based Nested Compound Type Identification for Sanskrit
Jivnesh Sandhan
|
Yaswanth Narsupalli
|
Sreevatsa Muppirala
|
Sriram Krishnan
|
Pavankumar Satuluri
|
Amba Kulkarni
|
Pawan Goyal
Findings of the Association for Computational Linguistics: EMNLP 2023
Multi-component compounding is a prevalent phenomenon in Sanskrit, and understanding the implicit structure of a compound’s components is crucial for deciphering its meaning. Earlier approaches in Sanskrit have focused on binary compounds and neglected the multi-component compound setting. This work introduces the novel task of nested compound type identification (NeCTI), which aims to identify nested spans of a multi-component compound and decode the implicit semantic relations between them. To the best of our knowledge, this is the first attempt in the field of lexical semantics to propose this task. We present 2 newly annotated datasets including an out-of-domain dataset for this task. We also benchmark these datasets by exploring the efficacy of the standard problem formulations such as nested named entity recognition, constituency parsing and seq2seq, etc. We present a novel framework named DepNeCTI: Dependency-based Nested Compound Type Identifier that surpasses the performance of the best baseline with an average absolute improvement of 13.1 points F1-score in terms of Labeled Span Score (LSS) and a 5-fold enhancement in inference efficiency. In line with the previous findings in the binary Sanskrit compound identification task, context provides benefits for the NeCTI task. The codebase and datasets are publicly available at: https://github.com/yaswanth-iitkgp/DepNeCTI
Search
Fix data
Co-authors
- Aaran Arulraj 1
- Abhranil Chandra 1
- Haonan Chen 1
- Wenhu Chen 1
- Quy Duc Do 1
- show all...