Yidong Shi
2023
Always the Best Fit: Adaptive Domain Gap Filling from Causal Perspective for Few-Shot Relation Extraction
Ge Bai
|
Chenji Lu
|
Jiaxiang Geng
|
Shilong Li
|
Yidong Shi
|
Xiyan Liu
|
Ying Liu
|
Zhang Zhang
|
Ruifang Liu
Findings of the Association for Computational Linguistics: EMNLP 2023
Cross-domain Relation Extraction aims to transfer knowledge from a source domain to a different target domain to address low-resource challenges. However, the semantic gap caused by data bias between domains is a major challenge, especially in few-shot scenarios. Previous work has mainly focused on transferring knowledge between domains through shared feature representations without analyzing the impact of each factor that may produce data bias based on the characteristics of each domain. This work takes a causal perspective and proposes a new framework CausalGF. By constructing a unified structural causal model, we estimating the causal effects of factors such as syntactic structure, label distribution,and entities on the outcome. CausalGF calculates the causal effects among the factors and adjusts them dynamically based on domain characteristics, enabling adaptive gap filling. Our experiments show that our approach better fills the domain gap, yielding significantly better results on the cross-domain few-shot relation extraction task.
2022
Entity-level Interaction via Heterogeneous Graph for Multimodal Named Entity Recognition
Gang Zhao
|
Guanting Dong
|
Yidong Shi
|
Haolong Yan
|
Weiran Xu
|
Si Li
Findings of the Association for Computational Linguistics: EMNLP 2022
Multimodal Named Entity Recognition (MNER) faces two specific challenges: 1) How to capture useful entity-related visual information. 2) How to alleviate the interference of visual noise. Previous works have gained progress by improving interacting mechanisms or seeking for better visual features. However, existing methods neglect the integrity of entity semantics and conduct cross-modal interaction at token-level, which cuts apart the semantics of entities and makes non-entity tokens easily interfered with by irrelevant visual noise. Thus in this paper, we propose an end-to-end heterogeneous Graph-based Entity-level Interacting model (GEI) for MNER. GEI first utilizes a span detection subtask to obtain entity representations, which serve as the bridge between two modalities. Then, the heterogeneous graph interacting network interacts entity with object nodes to capture entity-related visual information, and fuses it into only entity-associated tokens to rid non-entity tokens of the visual noise. Experiments on two widely used datasets demonstrate the effectiveness of our method. Our code will be available at https://github.com/GangZhao98/GEI.