Yihao Wang
2024
Overcome Noise and Bias: Segmentation-Aided Multi-Granularity Denoising and Debiasing for Enhanced Quarduples Extraction in Dialogue
Xianlong Luo
|
Meng Yang
|
Yihao Wang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Dialogue Aspect-based Sentiment Quadruple analysis (DiaASQ) extends ABSA to more complex real-world scenarios (i.e., dialogues), which makes existing generation methods encounter heightened noise and order bias challenges, leading to decreased robustness and accuracy.To address these, we propose the Segmentation-Aided multi-grained Denoising and Debiasing (SADD) method. For noise, we propose the Multi-Granularity Denoising Generation model (MGDG), achieving word-level denoising via sequence labeling and utterance-level denoising via topic-aware dialogue segmentation. Denoised Attention in MGDG integrates multi-grained denoising information to help generate denoised output.For order bias, we first theoretically analyze its direct cause as the gap between ideal and actual training objectives and propose a distribution-based solution. Since this solution introduces a one-to-many learning challenge, our proposed Segmentation-aided Order Bias Mitigation (SOBM) method utilizes dialogue segmentation to supplement order diversity, concurrently mitigating this challenge and order bias.Experiments demonstrate SADD’s effectiveness, achieving state-of-the-art results with a 6.52% F1 improvement.
2023
Tagging-Assisted Generation Model with Encoder and Decoder Supervision for Aspect Sentiment Triplet Extraction
Luo Xianlong
|
Meng Yang
|
Yihao Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
ASTE (Aspect Sentiment Triplet Extraction) has gained increasing attention. Recent advancements in the ASTE task have been primarily driven by Natural Language Generation-based (NLG) approaches. However, most NLG methods overlook the supervision of the encoder-decoder hidden representations and fail to fully utilize the semantic information provided by the labels to enhance supervision. These limitations can hinder the extraction of implicit aspects and opinions. To address these challenges, we propose a tagging-assisted generation model with encoder and decoder supervision (TAGS), which enhances the supervision of the encoder and decoder through multiple-perspective tagging assistance and label semantic representations. Specifically, TAGS enhances the generation task by integrating an additional sequence tagging task, which improves the encoder’s capability to distinguish the words of triplets. Moreover, it utilizes sequence tagging probabilities to guide the decoder, improving the generated content’s quality. Furthermore, TAGS employs a self-decoding process for labels to acquire the semantic representations of the labels and aligns the decoder’s hidden states with these semantic representations, thereby achieving enhanced semantic supervision for the decoder’s hidden states. Extensive experiments on various public benchmarks demonstrate that TAGS achieves state-of-the-art performance.
2022
Exploring the Impact of Negative Samples of Contrastive Learning: A Case Study of Sentence Embedding
Rui Cao
|
Yihao Wang
|
Yuxin Liang
|
Ling Gao
|
Jie Zheng
|
Jie Ren
|
Zheng Wang
Findings of the Association for Computational Linguistics: ACL 2022
Contrastive learning is emerging as a powerful technique for extracting knowledge from unlabeled data. This technique requires a balanced mixture of two ingredients: positive (similar) and negative (dissimilar) samples. This is typically achieved by maintaining a queue of negative samples during training. Prior works in the area typically uses a fixed-length negative sample queue, but how the negative sample size affects the model performance remains unclear. The opaque impact of the number of negative samples on performance when employing contrastive learning aroused our in-depth exploration. This paper presents a momentum contrastive learning model with negative sample queue for sentence embedding, namely MoCoSE. We add the prediction layer to the online branch to make the model asymmetric and together with EMA update mechanism of the target branch to prevent the model from collapsing. We define a maximum traceable distance metric, through which we learn to what extent the text contrastive learning benefits from the historical information of negative samples. Our experiments find that the best results are obtained when the maximum traceable distance is at a certain range, demonstrating that there is an optimal range of historical information for a negative sample queue. We evaluate the proposed unsupervised MoCoSE on the semantic text similarity (STS) task and obtain an average Spearman’s correlation of 77.27%. Source code is available here.