Yihong Wu
2024
Exploring the Best Practices of Query Expansion with Large Language Models
Le Zhang
|
Yihong Wu
|
Qian Yang
|
Jian-Yun Nie
Findings of the Association for Computational Linguistics: EMNLP 2024
Large Language Models (LLMs) are foundational in language technologies, particularly in information retrieval (IR). In this paper, we thoroughly explore the best practice of leveraging LLMs for query expansion. To this end, we introduce a training-free, straightforward yet effective framework called Multi-Text Generation Integration (MuGI). This approach leverages LLMs to generate multiple pseudo-references, which are then integrated with the original queries to enhance both sparse and dense retrieval methods. Additionally, we introduce a retrieval pipeline based on MuGI, which combines the strengths of sparse and dense retrievers to achieve superior performance without the need for costly pre-indexing. Our empirical findings reveal that: (1) Increasing the number of samples from LLMs benefits IR systems; (2) A balance between the query and pseudo-documents, and an effective integration strategy, is critical for high performance; (3) Contextual information from LLMs is essential, even boost a 23M model to outperform a 7B baseline model; (4) Pseudo relevance feedback can further calibrate queries for improved performance; and (5) Query expansion is widely applicable and versatile, consistently enhancing models ranging from 23M to 7B parameters. Our code and all generated references are made available at https://github.com/lezhang7/Retrieval_MuGI.
2023
ConvGQR: Generative Query Reformulation for Conversational Search
Fengran Mo
|
Kelong Mao
|
Yutao Zhu
|
Yihong Wu
|
Kaiyu Huang
|
Jian-Yun Nie
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
In conversational search, the user’s real search intent for the current conversation turn is dependent on the previous conversation history. It is challenging to determine a good search query from the whole conversation context. To avoid the expensive re-training of the query encoder, most existing methods try to learn a rewriting model to de-contextualize the current query by mimicking the manual query rewriting. However, manually rewritten queries are not always the best search queries. Thus, training a rewriting model on them would lead to sub-optimal queries. Another useful information to enhance the search query is the potential answer to the question. In this paper, we propose ConvGQR, a new framework to reformulate conversational queries based on generative pre-trained language models (PLMs), one for query rewriting and another for generating potential answers. By combining both, ConvGQR can produce better search queries. In addition, to relate query reformulation to the retrieval task, we propose a knowledge infusion mechanism to optimize both query reformulation and retrieval. Extensive experiments on four conversational search datasets demonstrate the effectiveness of ConvGQR.
MoqaGPT : Zero-Shot Multi-modal Open-domain Question Answering with Large Language Model
Le Zhang
|
Yihong Wu
|
Fengran Mo
|
Jian-Yun Nie
|
Aishwarya Agrawal
Findings of the Association for Computational Linguistics: EMNLP 2023
Multi-modal open-domain question answering typically requires evidence retrieval from databases across diverse modalities, such as images, tables, passages, etc. Even Large Language Models (LLMs) like GPT-4 fall short in this task. To enable LLMs to tackle the task in a zero-shot manner, we introduce MoqaGPT, a straightforward and flexible framework. Using a divide-and-conquer strategy that bypasses intricate multi-modality ranking, our framework can accommodate new modalities and seamlessly transition to new models for the task. Built upon LLMs, MoqaGPT retrieves and extracts answers from each modality separately, then fuses this multi-modal information using LLMs to produce a final answer. Our methodology boosts performance on the MMCoQA dataset, improving F1 by +37.91 points and EM by +34.07 points over the supervised baseline. On the MultiModalQA dataset, MoqaGPT surpasses the zero-shot baseline, improving F1 by 9.5 points and EM by 10.1 points, and significantly closes the gap with supervised methods. Our codebase is available at https://github.com/lezhang7/MOQAGPT.
Search
Co-authors
- Jian-Yun Nie 3
- Fengran Mo 2
- Le Zhang 2
- Kelong Mao 1
- Yutao Zhu 1
- show all...