Yinxiao Liu
2024
Enhancing Reinforcement Learning with Dense Rewards from Language Model Critic
Meng Cao
|
Lei Shu
|
Lei Yu
|
Yun Zhu
|
Nevan Wichers
|
Yinxiao Liu
|
Lei Meng
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Reinforcement learning (RL) can align language models with non-differentiable reward signals, such as human preferences. However, a major challenge arises from the sparsity of these reward signals - typically, there is only a single reward for an entire output. This sparsity of rewards can lead to inefficient and unstable learning. To address this challenge, our paper introduces an novel framework that utilizes the critique capability of Large Language Models (LLMs) to produce intermediate-step rewards during RL training. Our method involves coupling a policy model with a critic language model, which is responsible for providing comprehensive feedback of each part of the output. This feedback is then translated into token or span-level rewards that can be used to guide the RL training process. We investigate this approach under two different settings: one where the policy model is smaller and is paired with a more powerful critic model, and another where a single language model fulfills both roles. We assess our approach on three text generation tasks: sentiment control, language model detoxification, and summarization. Experimental results show that incorporating artificial intrinsic rewards significantly improve both sample efficiency and the overall performance of the policy model, supported by both automatic and human evaluation.
Fusion-Eval: Integrating Assistant Evaluators with LLMs
Lei Shu
|
Nevan Wichers
|
Liangchen Luo
|
Yun Zhu
|
Yinxiao Liu
|
Jindong Chen
|
Lei Meng
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track
Evaluating natural language generation (NLG) systems automatically poses significant challenges.Recent studies have employed large language models (LLMs) as reference-free metrics for NLG evaluation, enhancing adaptability to new tasks tasks. However, these methods still show lower correspondence with human judgments compared to specialized neural evaluators.In this paper, we introduce “Fusion-Eval”, an innovative approach that leverages LLMs to integrate insights from various assistant evaluators. The LLM is given the example to evaluate along with scores from the assistant evaluators. Each of these evaluators specializes in assessing distinct aspects of responses.Fusion-Eval achieves a 0.962 system-level Kendall-Tau correlation with humans on SummEval and a 0.744 turn-level Spearman correlation on TopicalChat, which is significantly higher than baseline methods. These results highlight Fusion-Eval’s significant potential in the realm of natural language system evaluation.
Towards an On-device Agent for Text Rewriting
Yun Zhu
|
Yinxiao Liu
|
Felix Stahlberg
|
Shankar Kumar
|
Yu-Hui Chen
|
Liangchen Luo
|
Lei Shu
|
Renjie Liu
|
Jindong Chen
|
Lei Meng
Findings of the Association for Computational Linguistics: NAACL 2024
Large Language Models (LLMs) have demonstrated impressive capabilities for text rewriting. However creating a smaller yet potent language model for text rewriting presents two formidable challenges: costly data collection and absence of emergent capabilities.In this paper we present solutions to address the above challenges.We propose an new instruction tuning method to develop a mo-bile text rewriting model that leverages LLM-generated data and heuristic reinforcement learning, eliminating the need for human data collection. Moreover, to bridge the performance gap from the constraint size, we pro-pose a cascading approach based on the confidence levels which are distilled from the large server model’s critiques. To evaluate the text rewriting tasks for mobile scenarios, we introduce MessageRewriteEval, a human-labeled benchmark that focuses on text rewriting of messages through natural language instructions. Through empirical experiments, we demonstrate that our on-device model surpasses the current state-of-the-art LLMs in text rewriting while maintaining a significantly reduced model size using public benchmark EditEval and our new benchmark. We also demonstrate that our proposed cascading approach improves model performance further.