One of the fundamental skills required for an agent acting in an environment to complete tasks is the ability to understand what actions are plausible at any given point. This work explores a novel use of code representations to reason about action preconditions for sequential decision making tasks. Code representations offer the flexibility to model procedural activities and associated constraints as well as the ability to execute and verify constraint satisfaction. Leveraging code representations, we extract action preconditions from demonstration trajectories in a zero-shot manner using pre-trained code models. Given these extracted preconditions, we propose a precondition-aware action sampling strategy that ensures actions predicted by a policy are consistent with preconditions. We demonstrate that the proposed approach enhances the performance of few-shot policy learning approaches across task-oriented dialog and embodied textworld benchmarks.
Pretrained language models have demonstrated extraordinary capabilities in language generation. However, real-world tasks often require controlling the distribution of generated text in order to mitigate bias, promote fairness, and achieve personalization. Existing techniques for controlling the distribution of generated text only work with quantified distributions, which require pre-defined categories, proportions of the distribution, or an existing corpus following the desired distributions. However, many important distributions, such as personal preferences, are unquantified. In this work, we tackle the problem of generating text following arbitrary distributions (quantified and unquantified) by proposing NANO, a few-shot human-in-the-loop training algorithm that continuously learns from human feedback. NANO achieves state-of-the-art results on single topic/attribute as well as quantified distribution control compared to previous works. We also show that NANO is able to learn unquantified distributions, achieves personalization, and captures differences between different individuals’ personal preferences with high sample efficiency.
Task-Oriented Dialogue (TOD) systems have become crucial components in interactive artificial intelligence applications. While recent advances have capitalized on pre-trained language models (PLMs), they exhibit limitations regarding transparency and controllability. To address these challenges, we propose a novel approach focusing on inferring the TOD-flow graph from dialogue data annotated with dialog acts, uncovering the underlying task structure in the form of a graph. The inferred TOD-flow graph can be easily integrated with any dialogue model to improve its prediction performance, transparency, and controllability. Our TOD-flow graph learns what a model can, should, and should not predict, effectively reducing the search space and providing a rationale for the model’s prediction. We show that the proposed TOD-flow graph better resemble human-annotated graphs compared to prior approaches. Furthermore, when combined with several dialogue policies and end-to-end dialogue models, we demonstrate that our approach significantly improves dialog act classification and end-to-end response generation performance in the MultiWOZ and SGD benchmarks.
Diffusion probabilistic models have shown great success in generating high-quality images controllably, and researchers have tried to utilize this controllability into text generation domain. Previous works on diffusion-based language models have shown that they can be trained without external knowledge (such as pre-trained weights) and still achieve stable performance and controllability. In this paper, we trained a diffusion-based model on StylePTB dataset, the standard benchmark for fine-grained text style transfers. The tasks in StylePTB requires much more refined control over the output text compared to tasks evaluated in previous works, and our model was able to achieve state-of-the-art performance on StylePTB on both individual and compositional transfers. Moreover, our model, trained on limited data from StylePTB without external knowledge, outperforms previous works that utilized pretrained weights, embeddings, and external grammar parsers, and this may indicate that diffusion-based language models have great potential under low-resource settings.
Text style transfer aims to controllably generate text with targeted stylistic changes while maintaining core meaning from the source sentence constant. Many of the existing style transfer benchmarks primarily focus on individual high-level semantic changes (e.g. positive to negative), which enable controllability at a high level but do not offer fine-grained control involving sentence structure, emphasis, and content of the sentence. In this paper, we introduce a large-scale benchmark, StylePTB, with (1) paired sentences undergoing 21 fine-grained stylistic changes spanning atomic lexical, syntactic, semantic, and thematic transfers of text, as well as (2) compositions of multiple transfers which allow modeling of fine-grained stylistic changes as building blocks for more complex, high-level transfers. By benchmarking existing methods on StylePTB, we find that they struggle to model fine-grained changes and have an even more difficult time composing multiple styles. As a result, StylePTB brings novel challenges that we hope will encourage future research in controllable text style transfer, compositional models, and learning disentangled representations. Solving these challenges would present important steps towards controllable text generation.