Yujun Li
2023
DT-Solver: Automated Theorem Proving with Dynamic-Tree Sampling Guided by Proof-level Value Function
Haiming Wang
|
Ye Yuan
|
Zhengying Liu
|
Jianhao Shen
|
Yichun Yin
|
Jing Xiong
|
Enze Xie
|
Han Shi
|
Yujun Li
|
Lin Li
|
Jian Yin
|
Zhenguo Li
|
Xiaodan Liang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent advances in neural theorem-proving resort to large language models and tree searches. When proving a theorem, a language model advises single-step actions based on the current proving state and the tree search finds a sequence of correct steps using actions given by the language model. However, prior works often conduct constant computation efforts for each proving state while ignoring that the hard states often need more exploration than easy states. Moreover, they evaluate and guide the proof search solely depending on the current proof state instead of considering the whole proof trajectory as human reasoning does. Here, to accommodate general theorems, we propose a novel Dynamic-Tree Driven Theorem Solver (DT-Solver) by guiding the search procedure with state confidence and proof-level values. Specifically, DT-Solver introduces a dynamic-tree Monte-Carlo search algorithm, which dynamically allocates computing budgets for different state confidences, guided by a new proof-level value function to discover proof states that require substantial exploration. Experiments on two popular theorem-proving datasets, PISA and Mathlib, show significant performance gains by our DT-Solver over the state-of-the-art approaches, with a 6.65% improvement on average in terms of success rate. And especially under low computing resource settings (11.03% improvement on average).
Syllogistic Reasoning for Legal Judgment Analysis
Wentao Deng
|
Jiahuan Pei
|
Keyi Kong
|
Zhe Chen
|
Furu Wei
|
Yujun Li
|
Zhaochun Ren
|
Zhumin Chen
|
Pengjie Ren
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Legal judgment assistants are developing fast due to impressive progress of large language models (LLMs). However, people can hardly trust the results generated by a model without reliable analysis of legal judgement. For legal practitioners, it is common practice to utilize syllogistic reasoning to select and evaluate the arguments of the parties as part of the legal decision-making process. But the development of syllogistic reasoning for legal judgment analysis is hindered by the lack of resources: (1) there is no large-scale syllogistic reasoning dataset for legal judgment analysis, and (2) there is no set of established benchmarks for legal judgment analysis. In this paper, we construct and manually correct a syllogistic reasoning dataset for legal judgment analysis. The dataset contains 11,239 criminal cases which cover 4 criminal elements, 80 charges and 124 articles. We also select a set of large language models as benchmarks, and conduct a in-depth analysis of the capacity of their legal judgment analysis.