Yuping Wang
2024
StreamVoice: Streamable Context-Aware Language Modeling for Real-time Zero-Shot Voice Conversion
Zhichao Wang
|
Yuanzhe Chen
|
Xinsheng Wang
|
Lei Xie
|
Yuping Wang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent language model (LM) advancements have showcased impressive zero-shot voice conversion (VC) performance. However, existing LM-based VC models usually apply offline conversion from source semantics to acoustic features, demanding the complete source speech and limiting their deployment to real-time applications. In this paper, we introduce StreamVoice, a novel streaming LM-based model for zero-shot VC, facilitating real-time conversion given arbitrary speaker prompts and source speech. Specifically, to enable streaming capability, StreamVoice employs a fully causal context-aware LM with a temporal-independent acoustic predictor, while alternately processing semantic and acoustic features at each time step of autoregression which eliminates the dependence on complete source speech. To address the potential performance degradation from the incomplete context in streaming processing, we enhance the context-awareness of the LM through two strategies: 1) teacher-guided context foresight, using a teacher model to summarize the present and future semantic context during training to guide the model’s forecasting for missing context; 2) semantic masking strategy, promoting acoustic prediction from preceding corrupted semantic and acoustic input, enhancing context-learning ability. Notably, StreamVoice is the first LM-based streaming zero-shot VC model without any future look-ahead. Experiments demonstrate StreamVoice’s streaming conversion capability while achieving zero-shot performance comparable to non-streaming VC systems.
2020
Xiaomingbot: A Multilingual Robot News Reporter
Runxin Xu
|
Jun Cao
|
Mingxuan Wang
|
Jiaze Chen
|
Hao Zhou
|
Ying Zeng
|
Yuping Wang
|
Li Chen
|
Xiang Yin
|
Xijin Zhang
|
Songcheng Jiang
|
Yuxuan Wang
|
Lei Li
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations
This paper proposes the building of Xiaomingbot, an intelligent, multilingual and multimodal software robot equipped with four inte- gral capabilities: news generation, news translation, news reading and avatar animation. Its system summarizes Chinese news that it automatically generates from data tables. Next, it translates the summary or the full article into multiple languages, and reads the multi- lingual rendition through synthesized speech. Notably, Xiaomingbot utilizes a voice cloning technology to synthesize the speech trained from a real person’s voice data in one input language. The proposed system enjoys several merits: it has an animated avatar, and is able to generate and read multilingual news. Since it was put into practice, Xiaomingbot has written over 600,000 articles, and gained over 150,000 followers on social media platforms.
Search
Co-authors
- Runxin Xu 1
- Jun Cao 1
- Mingxuan Wang 1
- Jiaze Chen 1
- Hao Zhou 1
- show all...
Venues
- acl2