Yuqing Li
2024
AC-EVAL: Evaluating Ancient Chinese Language Understanding in Large Language Models
Yuting Wei
|
Yuanxing Xu
|
Xinru Wei
|
Yangsimin Yangsimin
|
Yangfu Zhu
|
Yuqing Li
|
Di Liu
|
Bin Wu
Findings of the Association for Computational Linguistics: EMNLP 2024
Given the importance of ancient Chinese in capturing the essence of rich historical and cultural heritage, the rapid advancements in Large Language Models (LLMs) necessitate benchmarks that can effectively evaluate their understanding of ancient contexts. To meet this need, we present AC-EVAL, an innovative benchmark designed to assess the advanced knowledge and reasoning capabilities of LLMs within the context of ancient Chinese. AC-EVAL is structured across three levels of difficulty reflecting different facets of language comprehension: general historical knowledge, short text understanding, and long text comprehension. The benchmark comprises 13 tasks, spanning historical facts, geography, social customs, art, philosophy, classical poetry and prose, providing a comprehensive assessment framework. Our extensive evaluation of top-performing LLMs, tailored for both English and Chinese, reveals a substantial potential for enhancing ancient text comprehension. By highlighting the strengths and weaknesses of LLMs, AC-EVAL aims to promote their development and application forward in the realms of ancient Chinese language education and scholarly research.
2023
Misleading Relation Classifiers by Substituting Words in Texts
Tian Jiang
|
Yunqi Liu
|
Yan Feng
|
Yuqing Li
|
Xiaohui Cui
Findings of the Association for Computational Linguistics: ACL 2023
Relation classification is to determine the semantic relationship between two entities in a given sentence. However, many relation classifiers are vulnerable to adversarial attacks, which is using adversarial examples to lead victim models to output wrong results. In this paper, we propose a simple but effective method for misleading relation classifiers. We first analyze the most important parts of speech (POSs) from the syntax and morphology perspectives, then we substitute words labeled with these POS tags in original samples with synonyms or hyponyms. Experimental results show that our method can generate adversarial texts of high quality, and most of the relationships between entities can be correctly identified in the process of human evaluation. Furthermore, the adversarial examples generated by our method possess promising transferability, and they are also helpful for improving the robustness of victim models.
2022
A Multi-Modal Knowledge Graph for Classical Chinese Poetry
Yuqing Li
|
Yuxin Zhang
|
Bin Wu
|
Ji-Rong Wen
|
Ruihua Song
|
Ting Bai
Findings of the Association for Computational Linguistics: EMNLP 2022
Classical Chinese poetry has a long history and is a precious cultural heritage of humankind. Displaying the classical Chinese poetry in a visual way, helps to cross cultural barriers in different countries, making it enjoyable for all the people. In this paper, we construct a multi-modal knowledge graph for classical Chinese poetry (PKG), in which the visual information of words in the poetry are incorporated. Then a multi-modal pre-training language model, PKG-Bert, is proposed to obtain the poetry representation with visual information, which bridges the semantic gap between different modalities. PKG-Bert achieves the state-of-the-art performance on the poetry-image retrieval task, showing the effectiveness of incorporating the multi-modal knowledge. The large-scale multi-modal knowledge graph of classical Chinese poetry will be released to promote the researches in classical Chinese culture area.