2024
pdf
bib
abs
Towards Artwork Explanation in Large-scale Vision Language Models
Kazuki Hayashi
|
Yusuke Sakai
|
Hidetaka Kamigaito
|
Katsuhiko Hayashi
|
Taro Watanabe
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
Large-scale Vision-Language Models (LVLMs) output text from images and instructions, demonstrating advanced capabilities in text generation and comprehension. However, it has not been clarified to what extent LVLMs understand the knowledge necessary for explaining images, the complex relationships between various pieces of knowledge, and how they integrate these understandings into their explanations. To address this issue, we propose a new task: the artwork explanation generation task, along with its evaluation dataset and metric for quantitatively assessing the understanding and utilization of knowledge about artworks. This task is apt for image description based on the premise that LVLMs are expected to have pre-existing knowledge of artworks, which are often subjects of wide recognition and documented information.It consists of two parts: generating explanations from both images and titles of artworks, and generating explanations using only images, thus evaluating the LVLMs’ language-based and vision-based knowledge.Alongside, we release a training dataset for LVLMs to learn explanations that incorporate knowledge about artworks.Our findings indicate that LVLMs not only struggle with integrating language and visual information but also exhibit a more pronounced limitation in acquiring knowledge from images alone. The datasets ExpArt=Explain Artworks are available at https://huggingface.co/datasets/naist-nlp/ExpArt
pdf
bib
abs
Toward the Evaluation of Large Language Models Considering Score Variance across Instruction Templates
Yusuke Sakai
|
Adam Nohejl
|
Jiangnan Hang
|
Hidetaka Kamigaito
|
Taro Watanabe
Proceedings of the 7th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP
The natural language understanding (NLU) performance of large language models (LLMs) has been evaluated across various tasks and datasets. The existing evaluation methods, however, do not take into account the variance in scores due to differences in prompts, which leads to unfair evaluation and comparison of NLU performance. Moreover, evaluation designed for specific prompts is inappropriate for instruction tuning, which aims to perform well with any prompt. It is therefore necessary to find a way to measure NLU performance in a fair manner, considering score variance between different instruction templates. In this study, we provide English and Japanese cross-lingual datasets for evaluating the NLU performance of LLMs, which include multiple instruction templates for fair evaluation of each task, along with regular expressions to constrain the output format. Furthermore, we propose the Sharpe score as an evaluation metric that takes into account the variance in scores between templates. Comprehensive analysis of English and Japanese LLMs reveals that the high variance among templates has a significant impact on the fair evaluation of LLMs.
pdf
bib
abs
Simul-MuST-C: Simultaneous Multilingual Speech Translation Corpus Using Large Language Model
Mana Makinae
|
Yusuke Sakai
|
Hidetaka Kamigaito
|
Taro Watanabe
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Simultaneous Speech Translation (SiST) begins translating before the entire source input is received, making it crucial to balance quality and latency. In real interpreting situations, interpreters manage this simultaneity by breaking sentences into smaller segments and translating them while maintaining the source order as much as possible. SiST could benefit from this approach to balance quality and latency. However, current corpora used for simultaneous tasks often involve significant word reordering in translation, which is not ideal given that interpreters faithfully follow source syntax as much as possible. Inspired by conference interpreting by humans utilizing the salami technique, we introduce the Simul-MuST-C, a dataset created by leveraging the Large Language Model (LLM), specifically GPT-4o, which aligns the target text as closely as possible to the source text by using minimal chunks that contain enough information to be interpreted. Experiments on three language pairs show that the effectiveness of segmented-base monotonicity in training data varies with the grammatical distance between the source and the target, with grammatically distant language pairs benefiting the most in achieving quality while minimizing latency.
pdf
bib
abs
Simultaneous Interpretation Corpus Construction by Large Language Models in Distant Language Pair
Yusuke Sakai
|
Mana Makinae
|
Hidetaka Kamigaito
|
Taro Watanabe
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
In Simultaneous Machine Translation (SiMT), training with a simultaneous interpretation (SI) corpus is an effective method for achieving high-quality yet low-latency. However, constructing such a corpus is challenging due to high costs, and limitations in annotator capabilities, and as a result, existing SI corpora are limited. Therefore, we propose a method to convert existing speech translation (ST) corpora into interpretation-style corpora, maintaining the original word order and preserving the entire source content using Large Language Models (LLM-SI-Corpus). We demonstrate that fine-tuning SiMT models using the LLM-SI-Corpus reduces latency while achieving better quality compared to models fine-tuned with other corpora in both speech-to-text and text-to-text settings. The LLM-SI-Corpus is available at https://github.com/yusuke1997/LLM-SI-Corpus.
pdf
bib
mbrs: A Library for Minimum Bayes Risk Decoding
Hiroyuki Deguchi
|
Yusuke Sakai
|
Hidetaka Kamigaito
|
Taro Watanabe
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
pdf
bib
abs
Centroid-Based Efficient Minimum Bayes Risk Decoding
Hiroyuki Deguchi
|
Yusuke Sakai
|
Hidetaka Kamigaito
|
Taro Watanabe
|
Hideki Tanaka
|
Masao Utiyama
Findings of the Association for Computational Linguistics: ACL 2024
Minimum Bayes risk (MBR) decoding achieved state-of-the-art translation performance by using COMET, a neural metric that has a high correlation with human evaluation.However, MBR decoding requires quadratic time since it computes the expected score between a translation hypothesis and all reference translations.We propose centroid-based MBR (CBMBR) decoding to improve the speed of MBR decoding.Our method clusters the reference translations in the feature space, and then calculates the score using the centroids of each cluster.The experimental results show that our CBMBR not only improved the decoding speed of the expected score calculation 5.7 times, but also outperformed vanilla MBR decoding in translation quality by up to 0.5 COMET in the WMT’22 En↔Ja, En↔De, En↔Zh, and WMT’23 En↔Ja translation tasks.
pdf
bib
abs
mCSQA: Multilingual Commonsense Reasoning Dataset with Unified Creation Strategy by Language Models and Humans
Yusuke Sakai
|
Hidetaka Kamigaito
|
Taro Watanabe
Findings of the Association for Computational Linguistics: ACL 2024
It is very challenging to curate a dataset for language-specific knowledge and common sense in order to evaluate natural language understanding capabilities of language models. Due to the limitation in the availability of annotators, most current multilingual datasets are created through translation, which cannot evaluate such language-specific aspects. Therefore, we propose Multilingual CommonsenseQA (mCSQA) based on the construction process of CSQA but leveraging language models for a more efficient construction, e.g., by asking LM to generate questions/answers, refine answers and verify QAs followed by reduced human efforts for verification. Constructed dataset is a benchmark for cross-lingual language-transfer capabilities of multilingual LMs, and experimental results showed high language-transfer capabilities for questions that LMs could easily solve, but lower transfer capabilities for questions requiring deep knowledge or commonsense. This highlights the necessity of language-specific datasets for evaluation and training. Finally, our method demonstrated that multilingual LMs could create QA including language-specific knowledge, significantly reducing the dataset creation cost compared to manual creation. The datasets are available at https://huggingface.co/datasets/yusuke1997/mCSQA.
pdf
bib
abs
Does Pre-trained Language Model Actually Infer Unseen Links in Knowledge Graph Completion?
Yusuke Sakai
|
Hidetaka Kamigaito
|
Katsuhiko Hayashi
|
Taro Watanabe
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Knowledge graphs (KGs) consist of links that describe relationships between entities. Due to the difficulty of manually enumerating all relationships between entities, automatically completing them is essential for KGs. Knowledge Graph Completion (KGC) is a task that infers unseen relationships between entities in a KG. Traditional embedding-based KGC methods (e.g. RESCAL, TransE, DistMult, ComplEx, RotatE, HAKE, HousE, etc.) infer missing links using only the knowledge from training data. In contrast, the recent Pre-trained Language Model (PLM)-based KGC utilizes knowledge obtained during pre-training, which means it can estimate missing links between entities by reusing memorized knowledge from pre-training without inference. This part is problematic because building KGC models aims to infer unseen links between entities. However, conventional evaluations in KGC do not consider inference and memorization abilities separately. Thus, a PLM-based KGC method, which achieves high performance in current KGC evaluations, may be ineffective in practical applications. To address this issue, we analyze whether PLM-based KGC methods make inferences or merely access memorized knowledge. For this purpose, we propose a method for constructing synthetic datasets specified in this analysis and conclude that PLMs acquire the inference abilities required for KGC through pre-training, even though the performance improvements mostly come from textual information of entities and relations.
pdf
bib
abs
Evaluating Language Models in Location Referring Expression Extraction from Early Modern and Contemporary Japanese Texts
Ayuki Katayama
|
Yusuke Sakai
|
Shohei Higashiyama
|
Hiroki Ouchi
|
Ayano Takeuchi
|
Ryo Bando
|
Yuta Hashimoto
|
Toshinobu Ogiso
|
Taro Watanabe
Proceedings of the 4th International Conference on Natural Language Processing for Digital Humanities
Automatic extraction of geographic information, including Location Referring Expressions (LREs), can aid humanities research in analyzing large collections of historical texts. In this study, to investigate how accurate pretrained Transformer language models (LMs) can extract LREs from historical texts, we evaluate two representative types of LMs, namely, masked language model and causal language model, using early modern and contemporary Japanese datasets. Our experimental results demonstrated the potential of contemporary LMs for historical texts, but also suggest the need for further model enhancement, such as pretraining on historical texts.
pdf
bib
abs
Can Impressions of Music be Extracted from Thumbnail Images?
Takashi Harada
|
Takehiro Motomitsu
|
Katsuhiko Hayashi
|
Yusuke Sakai
|
Hidetaka Kamigaito
Proceedings of the 3rd Workshop on NLP for Music and Audio (NLP4MusA)
In recent years, there has been a notable increase in research on machine learning models for music retrieval and generation systems that are capable of taking natural language sentences as inputs. However, there is a scarcity of large-scale publicly available datasets, consisting of music data and their corresponding natural language descriptions known as music captions. In particular, non-musical information such as suitable situations for listening to a track and the emotions elicited upon listening is crucial for describing music. This type of information is underrepresented in existing music caption datasets due to the challenges associated with extracting it directly from music data. To address this issue, we propose a method for generating music caption data that incorporates non-musical aspects inferred from music thumbnail images, and validated the effectiveness of our approach through human evaluations.
pdf
bib
abs
Japanese Rule-based Grapheme-to-phoneme Conversion System and Multilingual Named Entity Dataset with International Phonetic Alphabet
Yuhi Matogawa
|
Yusuke Sakai
|
Taro Watanabe
|
Chihiro Taguchi
Proceedings of the 21st SIGMORPHON workshop on Computational Research in Phonetics, Phonology, and Morphology
In Japanese, loanwords are primarily written in Katakana, a syllabic writing system, based on their pronunciation. However, the transliterated loanwords often exhibit spelling variations, such as the word “Hepburn” being written as “ヘボン (hebon)”, “ヘプバーン (hepubaan)”, “ヘップバーン (heppubaan)”. These orthographical variants pose a bottleneck in multilingual Named Entity Recognition (NER), because named entities (NEs) do not have one-to-one matches. In this study, we introduce a rule-based grapheme-to-phoneme (G2P) system for Japanese based on literature in linguistics and a large-scale multilingual NE dataset with annotations of the International Phonetic Alphabet (IPA), focusing on IPA to address the Katakana spelling variations in loanwords. These rules and dataset are expected to be beneficial for tasks such as NE aggregation, G2P system, construction of cross-lingual language models, and entity linking. We hope our work advances research on Japanese NER with multilingual loanwords by solving the spelling ambiguities.
pdf
bib
abs
Document-level Translation with LLM Reranking: Team-J at WMT 2024 General Translation Task
Keito Kudo
|
Hiroyuki Deguchi
|
Makoto Morishita
|
Ryo Fujii
|
Takumi Ito
|
Shintaro Ozaki
|
Koki Natsumi
|
Kai Sato
|
Kazuki Yano
|
Ryosuke Takahashi
|
Subaru Kimura
|
Tomomasa Hara
|
Yusuke Sakai
|
Jun Suzuki
Proceedings of the Ninth Conference on Machine Translation
We participated in the constrained track for English-Japanese and Japanese-Chinese translations at the WMT 2024 General Machine Translation Task. Our approach was to generate a large number of sentence-level translation candidates and select the most probable translation using minimum Bayes risk (MBR) decoding and document-level large language model (LLM) re-ranking. We first generated hundreds of translation candidates from multiple translation models and retained the top 30 candidates using MBR decoding. In addition, we continually pre-trained LLMs on the target language corpora to leverage document-level information. We utilized LLMs to select the most probable sentence sequentially in context from the beginning of the document.
2023
pdf
bib
abs
NAIST-NICT WMT’23 General MT Task Submission
Hiroyuki Deguchi
|
Kenji Imamura
|
Yuto Nishida
|
Yusuke Sakai
|
Justin Vasselli
|
Taro Watanabe
Proceedings of the Eighth Conference on Machine Translation
In this paper, we describe our NAIST-NICT submission to the WMT’23 English ↔ Japanese general machine translation task. Our system generates diverse translation candidates and reranks them using a two-stage reranking system to find the best translation. First, we generated 50 candidates each from 18 translation methods using a variety of techniques to increase the diversity of the translation candidates. We trained seven models per language direction using various combinations of hyperparameters. From these models we used various decoding algorithms, ensembling the models, and using kNN-MT (Khandelwal et al., 2021). We processed the 900 translation candidates through a two-stage reranking system to find the most promising candidate. In the first step, we compared 50 candidates from each translation method using DrNMT (Lee et al., 2021) and returned the candidate with the best score. We ranked the final 18 candidates using COMET-MBR (Fernandes et al., 2022) and returned the best score as the system output. We found that generating diverse translation candidates improved translation quality using the well-designed reranker model.
2022
pdf
bib
abs
NAIST-NICT-TIT WMT22 General MT Task Submission
Hiroyuki Deguchi
|
Kenji Imamura
|
Masahiro Kaneko
|
Yuto Nishida
|
Yusuke Sakai
|
Justin Vasselli
|
Huy Hien Vu
|
Taro Watanabe
Proceedings of the Seventh Conference on Machine Translation (WMT)
In this paper, we describe our NAIST-NICT-TIT submission to the WMT22 general machine translation task. We participated in this task for the English ↔ Japanese language pair. Our system is characterized as an ensemble of Transformer big models, k-nearest-neighbor machine translation (kNN-MT) (Khandelwal et al., 2021), and reranking.In our translation system, we construct the datastore for kNN-MT from back-translated monolingual data and integrate kNN-MT into the ensemble model. We designed a reranking system to select a translation from the n-best translation candidates generated by the translation system. We also use a context-aware model to improve the document-level consistency of the translation.
2021
pdf
bib
abs
Transliteration for Low-Resource Code-Switching Texts: Building an Automatic Cyrillic-to-Latin Converter for Tatar
Chihiro Taguchi
|
Yusuke Sakai
|
Taro Watanabe
Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching
We introduce a Cyrillic-to-Latin transliterator for the Tatar language based on subword-level language identification. The transliteration is a challenging task due to the following two reasons. First, because modern Tatar texts often contain intra-word code-switching to Russian, a different transliteration set of rules needs to be applied to each morpheme depending on the language, which necessitates morpheme-level language identification. Second, the fact that Tatar is a low-resource language, with most of the texts in Cyrillic, makes it difficult to prepare a sufficient dataset. Given this situation, we proposed a transliteration method based on subword-level language identification. We trained a language classifier with monolingual Tatar and Russian texts, and applied different transliteration rules in accord with the identified language. The results demonstrate that our proposed method outscores other Tatar transliteration tools, and imply that it correctly transcribes Russian loanwords to some extent.