We analyze the behaviors of open large language models (LLMs) on the task of data-to-text (D2T) generation, i.e., generating coherent and relevant text from structured data. To avoid the issue of LLM training data contamination with standard benchmarks, we design Quintd - a tool for collecting novel structured data records from public APIs. We find that open LLMs (Llama 2, Mistral, and Zephyr) can generate fluent and coherent texts in zero-shot settings from data in common formats collected with Quintd. However, we show that the semantic accuracy of the outputs is a major issue: both according to human annotators and our reference-free metric based on GPT-4, more than 80% of the outputs of open LLMs contain at least one semantic error. We publicly release the code, data, and model outputs.
We present ‘factgenie‘: a framework for annotating and visualizing word spans in textual model outputs. Annotations can capture various span-based phenomena such as semantic inaccuracies or irrelevant text. With ‘factgenie‘, the annotations can be collected both from human crowdworkers and large language models. Our framework consists of a web interface for data visualization and gathering text annotations, powered by an easily extensible codebase.
This paper presents teaching materials, particularly assignments and ideas for classroom activities, from a new course on large language modelsThe assignments include experiments with LLM inference for weather report generation and machine translation.The classroom activities include class quizzes, focused research on downstream tasks and datasets, and an interactive “best paper” session aimed at reading and comprehension of research papers.
Heterogenity of data-to-text generation datasets limits the research on data-to-text generation systems. We present TabGenie – a toolkit which enables researchers to explore, preprocess, and analyze a variety of data-to-text generation datasets through the unified framework of table-to-text generation. In TabGenie, all inputs are represented as tables with associated metadata. The tables can be explored through a web interface, which also provides an interactive mode for debugging table-to-text generation, facilitates side-by-side comparison of generated system outputs, and allows easy exports for manual analysis. Furthermore, TabGenie is equipped with command line processing tools and Python bindings for unified dataset loading and processing. We release TabGenie as a PyPI package and provide its open-source code and a live demo at https://github.com/kasnerz/tabgenie.
Pretrained language models (PLMs) for data-to-text (D2T) generation can use human-readable data labels such as column headings, keys, or relation names to generalize to out-of-domain examples. However, the models are well-known in producing semantically inaccurate outputs if these labels are ambiguous or incomplete, which is often the case in D2T datasets. In this paper, we expose this issue on the task of descibing a relation between two entities. For our experiments, we collect a novel dataset for verbalizing a diverse set of 1,522 unique relations from three large-scale knowledge graphs (Wikidata, DBPedia, YAGO). We find that although PLMs for D2T generation expectedly fail on unclear cases, models trained with a large variety of relation labels are surprisingly robust in verbalizing novel, unseen relations. We argue that using data with a diverse set of clear and meaningful labels is key to training D2T generation systems capable of generalizing to novel domains.
In data-to-text (D2T) generation, training on in-domain data leads to overfitting to the data representation and repeating training data noise. We examine how to avoid finetuning pretrained language models (PLMs) on D2T generation datasets while still taking advantage of surface realization capabilities of PLMs. Inspired by pipeline approaches, we propose to generate text by transforming single-item descriptions with a sequence of modules trained on general-domain text-based operations: ordering, aggregation, and paragraph compression. We train PLMs for performing these operations on a synthetic corpus WikiFluent which we build from English Wikipedia. Our experiments on two major triple-to-text datasets—WebNLG and E2E—show that our approach enables D2T generation from RDF triples in zero-shot settings.
In this paper, we present the results of two reproduction studies for the human evaluation originally reported by Dušek and Kasner (2020) in which the authors comparatively evaluated outputs produced by a semantic error detection system for data-to-text generation against reference outputs. In the first reproduction, the original evaluators repeat the evaluation, in a test of the repeatability of the original evaluation. In the second study, two new evaluators carry out the evaluation task, in a test of the reproducibility of the original evaluation under otherwise identical conditions. We describe our approach to reproduction, and present and analyse results, finding different degrees of reproducibility depending on result type, data and labelling task. Our resources are available and open-sourced.
We present our Charles-UPF submission for the Shared Task on Evaluating Accuracy in Generated Texts at INLG 2021. Our system can detect the errors automatically using a combination of a rule-based natural language generation (NLG) system and pretrained language models (LMs). We first utilize a rule-based NLG system to generate sentences with facts that can be derived from the input. For each sentence we evaluate, we select a subset of facts which are relevant by measuring semantic similarity to the sentence in question. Finally, we finetune a pretrained language model on annotated data along with the relevant facts for fine-grained error detection. On the test set, we achieve 69% recall and 75% precision with a model trained on a mixture of human-annotated and synthetic data.
We present a novel approach to data-to-text generation based on iterative text editing. Our approach maximizes the completeness and semantic accuracy of the output text while leveraging the abilities of recent pre-trained models for text editing (LaserTagger) and language modeling (GPT-2) to improve the text fluency. To this end, we first transform data items to text using trivial templates, and then we iteratively improve the resulting text by a neural model trained for the sentence fusion task. The output of the model is filtered by a simple heuristic and reranked with an off-the-shelf pre-trained language model. We evaluate our approach on two major data-to-text datasets (WebNLG, Cleaned E2E) and analyze its caveats and benefits. Furthermore, we show that our formulation of data-to-text generation opens up the possibility for zero-shot domain adaptation using a general-domain dataset for sentence fusion.
A major challenge in evaluating data-to-text (D2T) generation is measuring the semantic accuracy of the generated text, i.e. checking if the output text contains all and only facts supported by the input data. We propose a new metric for evaluating the semantic accuracy of D2T generation based on a neural model pretrained for natural language inference (NLI). We use the NLI model to check textual entailment between the input data and the output text in both directions, allowing us to reveal omissions or hallucinations. Input data are converted to text for NLI using trivial templates. Our experiments on two recent D2T datasets show that our metric can achieve high accuracy in identifying erroneous system outputs.
We present our submission to the Simultaneous Translation And Paraphrase for Language Education (STAPLE) challenge. We used a standard Transformer model for translation, with a crosslingual classifier predicting correct translations on the output n-best list. To increase the diversity of the outputs, we used additional data to train the translation model, and we trained a paraphrasing model based on the Levenshtein Transformer architecture to generate further synonymous translations. The paraphrasing results were again filtered using our classifier. While the use of additional data and our classifier filter were able to improve results, the paraphrasing model produced too many invalid outputs to further improve the output quality. Our model without the paraphrasing component finished in the middle of the field for the shared task, improving over the best baseline by a margin of 10-22 % weighted F1 absolute.
We describe our system for the RDF-to-text generation task of the WebNLG Challenge 2020. We base our approach on the mBART model, which is pre-trained for multilingual denoising. This allows us to use a simple, identical, end-to-end setup for both English and Russian. Requiring minimal taskor languagespecific effort, our model placed in the first third of the leaderboard for English and first or second for Russian on automatic metrics, and it made it into the best or second-best system cluster on human evaluation.