Zhen Lei
2024
UNO Arena for Evaluating Sequential Decision-Making Capability of Large Language Models
Zhanyue Qin
|
Haochuan Wang
|
Deyuan Liu
|
Ziyang Song
|
Cunhang Fan
|
Zhao Lv
|
Jinlin Wu
|
Zhen Lei
|
Zhiying Tu
|
Dianhui Chu
|
Xiaoyan Yu
|
Dianbo Sui
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Sequential decision-making refers to algorithms that take into account the dynamics of the environment, where early decisions affect subsequent decisions. With large language models (LLMs) demonstrating powerful capabilities between tasks, we can’t help but ask: Can Current LLMs Effectively Make Sequential Decisions? In order to answer this question, we propose the UNO Arena based on the card game UNO to evaluate the sequential decision-making capability of LLMs and explain in detail why we choose UNO. In UNO Arena, We evaluate the sequential decision-making capability of LLMs dynamically with novel metrics based Monte Carlo methods. We set up random players, DQN-based reinforcement learning players, and LLM players (e.g. GPT-4, Gemini-pro) for comparison testing. Furthermore, in order to improve the sequential decision-making capability of LLMs, we propose the TUTRI player, which can involves having LLMs reflect their own actions with the summary of game history and the game strategy. Numerous experiments demonstrate that the TUTRI player achieves a notable breakthrough in the performance of sequential decision-making compared to the vanilla LLM player.
Factorized Learning Assisted with Large Language Model for Gloss-free Sign Language Translation
Zhigang Chen
|
Benjia Zhou
|
Jun Li
|
Jun Wan
|
Zhen Lei
|
Ning Jiang
|
Quan Lu
|
Guoqing Zhao
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Previous Sign Language Translation (SLT) methods achieve superior performance by relying on gloss annotations. However, labeling high-quality glosses is a labor-intensive task, which limits the further development of SLT. Although some approaches work towards gloss-free SLT through jointly training the visual encoder and translation network, these efforts still suffer from poor performance and inefficient use of the powerful Large Language Model (LLM). Most seriously, we find that directly introducing LLM into SLT will lead to insufficient learning of visual representations as LLM dominates the learning curve. To address these problems, we propose Factorized Learning assisted with Large Language Model (FLa-LLM) for gloss-free SLT. Concretely, we factorize the training process into two stages. In the visual initialing stage, we employ a lightweight translation model after the visual encoder to pre-train the visual encoder. In the LLM fine-tuning stage, we freeze the acquired knowledge in the visual encoder and integrate it with a pre-trained LLM to inspire the LLM’s translation potential. This factorized training strategy proves to be highly effective as evidenced by significant improvements achieved across three SLT datasets which are all conducted under the gloss-free setting.