Zhen Liu
2024
Incremental Sequence Labeling: A Tale of Two Shifts
Shengjie Qiu
|
Junhao Zheng
|
Zhen Liu
|
Yicheng Luo
|
Qianli Ma
Findings of the Association for Computational Linguistics: ACL 2024
The incremental sequence labeling task involves continuously learning new classes over time while retaining knowledge of the previous ones. Our investigation identifies two significant semantic shifts: E2O (where the model mislabels an old entity as a non-entity) and O2E (where the model labels a non-entity or old entity as a new entity). Previous research has predominantly focused on addressing the E2O problem, neglecting the O2E issue. This negligence results in a model bias towards classifying new data samples as belonging to the new class during the learning process. To address these challenges, we propose a novel framework, Incremental Sequential Labeling without Semantic Shifts (IS3). Motivated by the identified semantic shifts (E2O and O2E), IS3 aims to mitigate catastrophic forgetting in models. As for the E2O problem, we use knowledge distillation to maintain the model’s discriminative ability for old entities. Simultaneously, to tackle the O2E problem, we alleviate the model’s bias towards new entities through debiased loss and optimization levels.Our experimental evaluation, conducted on three datasets with various incremental settings, demonstrates the superior performance of IS3 compared to the previous state-of-the-art method by a significant margin.
2023
Span-level Aspect-based Sentiment Analysis via Table Filling
Mao Zhang
|
Yongxin Zhu
|
Zhen Liu
|
Zhimin Bao
|
Yunfei Wu
|
Xing Sun
|
Linli Xu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
In this paper, we propose a novel span-level model for Aspect-Based Sentiment Analysis (ABSA), which aims at identifying the sentiment polarity of the given aspect. In contrast to conventional ABSA models that focus on modeling the word-level dependencies between an aspect and its corresponding opinion expressions, in this paper, we propose Table Filling BERT (TF-BERT), which considers the consistency of multi-word opinion expressions at the span-level. Specially, we learn the span representations with a table filling method, by constructing an upper triangular table for each sentiment polarity, of which the elements represent the sentiment intensity of the specific sentiment polarity for all spans in the sentence. Two methods are then proposed, including table-decoding and table-aggregation, to filter out target spans or aggregate each table for sentiment polarity classification. In addition, we design a sentiment consistency regularizer to guarantee the sentiment consistency of each span for different sentiment polarities. Experimental results on three benchmarks demonstrate the effectiveness of our proposed model.