Zhiqi Shen
2024
A Survey on Natural Language Counterfactual Generation
Yongjie Wang
|
Xiaoqi Qiu
|
Yu Yue
|
Xu Guo
|
Zhiwei Zeng
|
Yuhong Feng
|
Zhiqi Shen
Findings of the Association for Computational Linguistics: EMNLP 2024
Natural language counterfactual generation aims to minimally modify a given text such that the modified text will be classified into a different class. The generated counterfactuals provide insight into the reasoning behind a model’s predictions by highlighting which words significantly influence the outcomes. Additionally, they can be used to detect model fairness issues and augment the training data to enhance the model’s robustness. A substantial amount of research has been conducted to generate counterfactuals for various NLP tasks, employing different models and methodologies. With the rapid growth of studies in this field, a systematic review is crucial to guide future researchers and developers. To bridge this gap, this survey provides a comprehensive overview of textual counterfactual generation methods, particularly those based on Large Language Models. We propose a new taxonomy that systematically categorizes the generation methods into four groups and summarizes the metrics for evaluating the generation quality. Finally, we discuss ongoing research challenges and outline promising directions for future work.
Rewriting the Code: A Simple Method for Large Language Model Augmented Code Search
Haochen Li
|
Xin Zhou
|
Zhiqi Shen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
In code search, the Generation-Augmented Retrieval (GAR) framework, which generates exemplar code snippets to augment queries, has emerged as a promising strategy to address the principal challenge of modality misalignment between code snippets and natural language queries, particularly with the demonstrated code generation capabilities of Large Language Models (LLMs). Nevertheless, our preliminary investigations indicate that the improvements conferred by such an LLM-augmented framework are somewhat constrained. This limitation could potentially be ascribed to the fact that the generated codes, albeit functionally accurate, frequently display a pronounced stylistic deviation from the ground truth code in the codebase. In this paper, we extend the foundational GAR framework and propose a simple yet effective method that additionally Rewrites the Code (ReCo) within the codebase for style normalization. Experimental results demonstrate that ReCo significantly boosts retrieval accuracy across sparse (up to 35.7%), zero-shot dense (up to 27.6%), and fine-tuned dense (up to 23.6%) retrieval settings in diverse search scenarios. To further elucidate the advantages of ReCo and stimulate research in code style normalization, we introduce Code Style Similarity, the first metric tailored to quantify stylistic similarities in code. Notably, our empirical findings reveal the inadequacy of existing metrics in capturing stylistic nuances. The source code and data are available at https://github.com/Alex-HaochenLi/ReCo.
2023
Efficient Cross-Task Prompt Tuning for Few-Shot Conversational Emotion Recognition
Yige Xu
|
Zhiwei Zeng
|
Zhiqi Shen
Findings of the Association for Computational Linguistics: EMNLP 2023
Emotion Recognition in Conversation (ERC) has been widely studied due to its importance in developing emotion-aware empathetic machines. The rise of pre-trained language models (PLMs) has further pushed the limit of ERC performance. However, most recent works on ERC using PLMs are heavily data-driven, and requires fine-tuning the entire PLMs. To improve both sample and computational efficiency, we propose a derivative-free optimization method called Cross-Task Prompt Tuning (CTPT) for few-shot conversational emotion recognition. Unlike existing methods that learn independent knowledge from individual tasks, CTPT leverages sharable cross-task knowledge by exploiting external knowledge from other source tasks to improve learning performance under the few-shot setting. Moreover, CTPT only needs to optimize a vector under the low intrinsic dimensionality without gradient, which is highly parameter-efficient compared with existing approaches. Experiments on five different contextual conversation datasets demonstrate that our CTPT method has superior results on both few-shot scenarios and zero-shot transfers.
Search
Co-authors
- Zhiwei Zeng 2
- Yige Xu 1
- Yongjie Wang 1
- Xiaoqi Qiu 1
- Yu Yue 1
- show all...