Zhiqiang Xu
2024
Visual Question Decomposition on Multimodal Large Language Models
Haowei Zhang
|
Jianzhe Liu
|
Zhen Han
|
Shuo Chen
|
Bailan He
|
Volker Tresp
|
Zhiqiang Xu
|
Jindong Gu
Findings of the Association for Computational Linguistics: EMNLP 2024
Question decomposition has emerged as an effective strategy for prompting Large Language Models (LLMs) to answer complex questions. However, while existing methods primarily focus on unimodal language models, the question decomposition capability of Multimodal Large Language Models (MLLMs) has yet to be explored. To this end, this paper explores visual question decomposition on MLLMs. Specifically, we introduce a systematic evaluation framework including a dataset and several evaluation criteria to assess the quality of the decomposed sub-questions, revealing that existing MLLMs struggle to produce high-quality sub-questions. To address this limitation, we propose a specific finetuning dataset, DecoVQA+, for enhancing the model’s question decomposition capability. Aiming at enabling models to perform appropriate selective decomposition, we propose an efficient finetuning pipeline. The finetuning pipeline consists of our proposed dataset and a training objective for selective decomposition. Finetuned MLLMs demonstrate significant improvements in the quality of sub-questions and the policy of selective question decomposition. Additionally, the models also achieve higher accuracy with selective decomposition on VQA benchmark datasets.
TextLap: Customizing Language Models for Text-to-Layout Planning
Jian Chen
|
Ruiyi Zhang
|
Yufan Zhou
|
Jennifer Healey
|
Jiuxiang Gu
|
Zhiqiang Xu
|
Changyou Chen
Findings of the Association for Computational Linguistics: EMNLP 2024
Automatic generation of graphical layouts is crucial for many real-world applications, including designing posters, flyers, advertisements, and graphical user interfaces. Given the incredible ability of Large language models (LLMs) in both natural language understanding and generation, we believe that we could customize an LLM to help people create compelling graphical layouts starting with only text instructions from the user. We call our method TextLap (text-based layout planning). It uses a curated instruction-based layout planning dataset (InsLap) to customize LLMs as a graphic designer. Human annotators are asked to build a benchmark to evaluate different layout planning models. We demonstrate the effectiveness of TextLap and show that it outperforms strong baselines, including GPT-4 based methods, for document generation and graphical design benchmarks.
Search
Fix data
Co-authors
- Shuo Chen 1
- Jian Chen 1
- Changyou Chen 1
- Jindong Gu 1
- Jiuxiang Gu 1
- show all...