Abstract
This paper describes the methods behind the systems submitted by the University of Groningen for the WMT 2020 Unsupervised Machine Translation task for German–Upper Sorbian. We investigate the usefulness of data selection in the unsupervised setting. We find that we can perform data selection using a pretrained model and show that the quality of a set of sentences or documents can have a great impact on the performance of the UNMT system trained on it. Furthermore, we show that document-level data selection should be preferred for training the XLM model when possible. Finally, we show that there is a trade-off between quality and quantity of the data used to train UNMT systems.- Anthology ID:
- 2020.wmt-1.130
- Volume:
- Proceedings of the Fifth Conference on Machine Translation
- Month:
- November
- Year:
- 2020
- Address:
- Online
- Editors:
- Loïc Barrault, Ondřej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Alexander Fraser, Yvette Graham, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, André Martins, Makoto Morishita, Christof Monz, Masaaki Nagata, Toshiaki Nakazawa, Matteo Negri
- Venue:
- WMT
- SIG:
- SIGMT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 1099–1103
- Language:
- URL:
- https://aclanthology.org/2020.wmt-1.130
- DOI:
- Bibkey:
- Cite (ACL):
- Lukas Edman, Antonio Toral, and Gertjan van Noord. 2020. Data Selection for Unsupervised Translation of German–Upper Sorbian. In Proceedings of the Fifth Conference on Machine Translation, pages 1099–1103, Online. Association for Computational Linguistics.
- Cite (Informal):
- Data Selection for Unsupervised Translation of German–Upper Sorbian (Edman et al., WMT 2020)
- Copy Citation:
- PDF:
- https://aclanthology.org/2020.wmt-1.130.pdf
- Video:
- https://slideslive.com/38939613
Export citation
@inproceedings{edman-etal-2020-data, title = "Data Selection for Unsupervised Translation of {G}erman{--}{U}pper {S}orbian", author = "Edman, Lukas and Toral, Antonio and van Noord, Gertjan", editor = {Barrault, Lo{\"\i}c and Bojar, Ond{\v{r}}ej and Bougares, Fethi and Chatterjee, Rajen and Costa-juss{\`a}, Marta R. and Federmann, Christian and Fishel, Mark and Fraser, Alexander and Graham, Yvette and Guzman, Paco and Haddow, Barry and Huck, Matthias and Yepes, Antonio Jimeno and Koehn, Philipp and Martins, Andr{\'e} and Morishita, Makoto and Monz, Christof and Nagata, Masaaki and Nakazawa, Toshiaki and Negri, Matteo}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.130", pages = "1099--1103", abstract = "This paper describes the methods behind the systems submitted by the University of Groningen for the WMT 2020 Unsupervised Machine Translation task for German{--}Upper Sorbian. We investigate the usefulness of data selection in the unsupervised setting. We find that we can perform data selection using a pretrained model and show that the quality of a set of sentences or documents can have a great impact on the performance of the UNMT system trained on it. Furthermore, we show that document-level data selection should be preferred for training the XLM model when possible. Finally, we show that there is a trade-off between quality and quantity of the data used to train UNMT systems.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="edman-etal-2020-data"> <titleInfo> <title>Data Selection for Unsupervised Translation of German–Upper Sorbian</title> </titleInfo> <name type="personal"> <namePart type="given">Lukas</namePart> <namePart type="family">Edman</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Antonio</namePart> <namePart type="family">Toral</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Gertjan</namePart> <namePart type="family">van Noord</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2020-11</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the Fifth Conference on Machine Translation</title> </titleInfo> <name type="personal"> <namePart type="given">Loïc</namePart> <namePart type="family">Barrault</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ondřej</namePart> <namePart type="family">Bojar</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Fethi</namePart> <namePart type="family">Bougares</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Rajen</namePart> <namePart type="family">Chatterjee</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marta</namePart> <namePart type="given">R</namePart> <namePart type="family">Costa-jussà</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christian</namePart> <namePart type="family">Federmann</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mark</namePart> <namePart type="family">Fishel</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Alexander</namePart> <namePart type="family">Fraser</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yvette</namePart> <namePart type="family">Graham</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Paco</namePart> <namePart type="family">Guzman</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Barry</namePart> <namePart type="family">Haddow</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matthias</namePart> <namePart type="family">Huck</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Antonio</namePart> <namePart type="given">Jimeno</namePart> <namePart type="family">Yepes</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Philipp</namePart> <namePart type="family">Koehn</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">André</namePart> <namePart type="family">Martins</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Makoto</namePart> <namePart type="family">Morishita</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christof</namePart> <namePart type="family">Monz</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Masaaki</namePart> <namePart type="family">Nagata</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Toshiaki</namePart> <namePart type="family">Nakazawa</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matteo</namePart> <namePart type="family">Negri</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Online</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>This paper describes the methods behind the systems submitted by the University of Groningen for the WMT 2020 Unsupervised Machine Translation task for German–Upper Sorbian. We investigate the usefulness of data selection in the unsupervised setting. We find that we can perform data selection using a pretrained model and show that the quality of a set of sentences or documents can have a great impact on the performance of the UNMT system trained on it. Furthermore, we show that document-level data selection should be preferred for training the XLM model when possible. Finally, we show that there is a trade-off between quality and quantity of the data used to train UNMT systems.</abstract> <identifier type="citekey">edman-etal-2020-data</identifier> <location> <url>https://aclanthology.org/2020.wmt-1.130</url> </location> <part> <date>2020-11</date> <extent unit="page"> <start>1099</start> <end>1103</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T Data Selection for Unsupervised Translation of German–Upper Sorbian %A Edman, Lukas %A Toral, Antonio %A van Noord, Gertjan %Y Barrault, Loïc %Y Bojar, Ondřej %Y Bougares, Fethi %Y Chatterjee, Rajen %Y Costa-jussà, Marta R. %Y Federmann, Christian %Y Fishel, Mark %Y Fraser, Alexander %Y Graham, Yvette %Y Guzman, Paco %Y Haddow, Barry %Y Huck, Matthias %Y Yepes, Antonio Jimeno %Y Koehn, Philipp %Y Martins, André %Y Morishita, Makoto %Y Monz, Christof %Y Nagata, Masaaki %Y Nakazawa, Toshiaki %Y Negri, Matteo %S Proceedings of the Fifth Conference on Machine Translation %D 2020 %8 November %I Association for Computational Linguistics %C Online %F edman-etal-2020-data %X This paper describes the methods behind the systems submitted by the University of Groningen for the WMT 2020 Unsupervised Machine Translation task for German–Upper Sorbian. We investigate the usefulness of data selection in the unsupervised setting. We find that we can perform data selection using a pretrained model and show that the quality of a set of sentences or documents can have a great impact on the performance of the UNMT system trained on it. Furthermore, we show that document-level data selection should be preferred for training the XLM model when possible. Finally, we show that there is a trade-off between quality and quantity of the data used to train UNMT systems. %U https://aclanthology.org/2020.wmt-1.130 %P 1099-1103
Markdown (Informal)
[Data Selection for Unsupervised Translation of German–Upper Sorbian](https://aclanthology.org/2020.wmt-1.130) (Edman et al., WMT 2020)
- Data Selection for Unsupervised Translation of German–Upper Sorbian (Edman et al., WMT 2020)
ACL
- Lukas Edman, Antonio Toral, and Gertjan van Noord. 2020. Data Selection for Unsupervised Translation of German–Upper Sorbian. In Proceedings of the Fifth Conference on Machine Translation, pages 1099–1103, Online. Association for Computational Linguistics.