This prompt is measuring <mask>: evaluating bias evaluation in language models

Seraphina Goldfarb-Tarrant, Eddie Ungless, Esma Balkir, Su Lin Blodgett


Abstract
Bias research in NLP seeks to analyse models for social biases, thus helping NLP practitioners uncover, measure, and mitigate social harms. We analyse the body of work that uses prompts and templates to assess bias in language models. We draw on a measurement modelling framework to create a taxonomy of attributes that capture what a bias test aims to measure and how that measurement is carried out. By applying this taxonomy to 90 bias tests, we illustrate qualitatively and quantitatively that core aspects of bias test conceptualisations and operationalisations are frequently unstated or ambiguous, carry implicit assumptions, or be mismatched. Our analysis illuminates the scope of possible bias types the field is able to measure, and reveals types that are as yet under-researched. We offer guidance to enable the community to explore a wider section of the possible bias space, and to better close the gap between desired outcomes and experimental design, both for bias and for evaluating language models more broadly.
Anthology ID:
2023.findings-acl.139
Volume:
Findings of the Association for Computational Linguistics: ACL 2023
Month:
July
Year:
2023
Address:
Toronto, Canada
Editors:
Anna Rogers, Jordan Boyd-Graber, Naoaki Okazaki
Venue:
Findings
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
2209–2225
Language:
URL:
https://aclanthology.org/2023.findings-acl.139
DOI:
10.18653/v1/2023.findings-acl.139
Bibkey:
Cite (ACL):
Seraphina Goldfarb-Tarrant, Eddie Ungless, Esma Balkir, and Su Lin Blodgett. 2023. This prompt is measuring : evaluating bias evaluation in language models. In Findings of the Association for Computational Linguistics: ACL 2023, pages 2209–2225, Toronto, Canada. Association for Computational Linguistics.
Cite (Informal):
This prompt is measuring : evaluating bias evaluation in language models (Goldfarb-Tarrant et al., Findings 2023)
Copy Citation:
PDF:
https://aclanthology.org/2023.findings-acl.139.pdf