Offensive speech is highly prevalent on online platforms. Being trained on online data, Large Language Models (LLMs) display undesirable behaviors, such as generating harmful text or failing to recognize it. Despite these shortcomings, the models are becoming a part of our everyday lives by being used as tools for information search, content creation, writing assistance, and many more. Furthermore, the research explores using LLMs in applications with immense social risk, such as late-life companions and online content moderators. Despite the potential harms from LLMs in such applications, whether LLMs can reliably identify offensive speech and how they behave when they fail are open questions. This work addresses these questions by probing sixteen widely used LLMs and showing that most fail to identify (non-)offensive online language. Our experiments reveal undesirable behavior patterns in the context of offensive speech detection, such as erroneous response generation, over-reliance on profanity, and failure to recognize stereotypes. Our work highlights the need for extensive documentation of model reliability, particularly in terms of the ability to detect offensive language.
Pretrained language models (PLMs) have been shown to encode binary gender information of text authors, raising the risk of skewed representations and downstream harms. This effect is yet to be examined for transgender and non-binary identities, whose frequent marginalization may exacerbate harmful system behaviors. Addressing this gap, we first create TRANsCRIPT, a corpus of YouTube transcripts from transgender, cisgender, and non-binary speakers. Using this dataset, we probe various PLMs to assess if they encode the gender identity information, examining both frozen and fine-tuned representations as well as representations for inputs with author-specific words removed. Our findings reveal that PLM representations encode information for all gender identities but to different extents. The divergence is most pronounced for cis women and non-binary individuals, underscoring the critical need for gender-inclusive approaches to NLP systems.
Authorship Profiling (AP) aims to predict the demographic attributes (such as gender and age) of authors based on their writing styles. Ever-improving models mean that this task is gaining interest and application possibilities. However, with greater use also comes the risk that authors are misclassified more frequently, and it remains unclear to what extent the better models can capture the bias and who is affected by the models’ mistakes. In this paper, we investigate three established datasets for AP as well as classical and neural classifiers for this task. Our analyses show that it is often possible to predict the demographic information of the authors based on textual features. However, some features learned by the models are specific to datasets. Moreover, models are prone to errors based on stereotypes associated with topical bias.
In this paper, we revisit the seminal work of Garimella et al. 2019, who reported that dependency parsers learn demographically-related signals from their training data and perform differently on sentences authored by people of different genders. We re-run all the parsing experiments from Garimella et al. 2019 and find that their results are not reproducible. Additionally, the original patterns suggesting the presence of gender biases fail to generalize to other treebank and parsing architecture. Instead, our data analysis uncovers methodological shortcomings in the initial study that artificially introduced differences into female and male datasets during preprocessing. These disparities potentially compromised the validity of the original conclusions.
We describe the details of the Shared Task of the 5th ACL Workshop on Gender Bias in Natural Language Processing (GeBNLP 2024). The task uses dataset to investigate the quality of Machine Translation systems on a particular case of gender robustness. We report baseline results as well as the results of the first participants. The shared task will be permanently available in the Dynabench platform.
Research on language as interactive discourse underscores the deliberate use of demographic parameters such as gender, ethnicity, and class to shape social identities. For example, by explicitly disclosing one’s information and enforcing one’s social identity to an online community, the reception by and interaction with the said community is impacted, e.g., strengthening one’s opinions by depicting the speaker as credible through their experience in the subject. Here, we present a first thorough study of the role and effects of self-disclosures on online discourse dynamics, focusing on a pervasive type of self-disclosure: author gender. Concretely, we investigate the contexts and properties of gender self-disclosures and their impact on interaction dynamics in an online persuasive forum, ChangeMyView. Our contribution is twofold. At the level of the target phenomenon, we fill a research gap in the understanding of the impact of these self-disclosures on the discourse by bringing together features related to forum activity (votes, number of comments), linguistic/stylistic features from the literature, and discourse topics. At the level of the contributed resource, we enrich and release a comprehensive dataset that will provide a further impulse for research on the interplay between gender disclosures, community interaction, and persuasion in online discourse.
Instructional texts for specific target groups should ideally take into account the prior knowledge and needs of the readers in order to guide them efficiently to their desired goals. However, targeting specific groups also carries the risk of reflecting disparate social norms and subtle stereotypes. In this paper, we investigate the extent to which how-to guides from one particular platform, wikiHow, differ in practice depending on the intended audience. We conduct two case studies in which we examine qualitative features of texts written for specific audiences. In a generalization study, we investigate which differences can also be systematically demonstrated using computational methods. The results of our studies show that guides from wikiHow, like other text genres, are subject to subtle biases. We aim to raise awareness of these inequalities as a first step to addressing them in future work.
Potential gender biases existing in Wikipedia’s content can contribute to biased behaviors in a variety of downstream NLP systems. Yet, efforts in understanding what inequalities in portraying women and men occur in Wikipedia focused so far only on *biographies*, leaving open the question of how often such harmful patterns occur in other topics. In this paper, we investigate gender-related asymmetries in Wikipedia titles from *all domains*. We assess that for only half of gender-related articles, i.e., articles with words such as *women* or *male* in their titles, symmetrical counterparts describing the same concept for the other gender (and clearly stating it in their titles) exist. Among the remaining imbalanced cases, the vast majority of articles concern sports- and social-related issues. We provide insights on how such asymmetries can influence other Wikipedia components and propose steps towards reducing the frequency of observed patterns.
Graph-based and transition-based dependency parsers used to have different strengths and weaknesses. Therefore, combining the outputs of parsers from both paradigms used to be the standard approach to improve or analyze their performance. However, with the recent adoption of deep contextualized word representations, the chief weakness of graph-based models, i.e., their limited scope of features, has been mitigated. Through two popular combination techniques – blending and stacking – we demonstrate that the remaining diversity in the parsing models is reduced below the level of models trained with different random seeds. Thus, an integration no longer leads to increased accuracy. When both parsers depend on BiLSTMs, the graph-based architecture has a consistent advantage. This advantage stems from globally-trained BiLSTM representations, which capture more distant look-ahead syntactic relations. Such representations can be exploited through multi-task learning, which improves the transition-based parser, especially on treebanks with a high ratio of right-headed dependencies.
We present GRAIN-S, a set of manually created syntactic annotations for radio interviews in German. The dataset extends an existing corpus GRAIN and comes with constituency and dependency trees for six interviews. The rare combination of gold- and silver-standard annotation layers coming from GRAIN with high-quality syntax trees can serve as a useful resource for speech- and text-based research. Moreover, since interviews can be put between carefully prepared speech and spontaneous conversational speech, they cover phenomena not seen in traditional newspaper-based treebanks. Therefore, GRAIN-S can contribute to research into techniques for model adaptation and for building more corpus-independent tools. GRAIN-S follows TIGER, one of the established syntactic treebanks of German. We describe the annotation process and discuss decisions necessary to adapt the original TIGER guidelines to the interviews domain. Next, we give details on the conversion from TIGER-style trees to dependency trees. We provide data statistics and demonstrate differences between the new dataset and existing out-of-domain test sets annotated with TIGER syntactic structures. Finally, we provide baseline parsing results for further comparison.
We introduce the IMS contribution to the Surface Realization Shared Task 2019. Our submission achieves the state-of-the-art performance without using any external resources. The system takes a pipeline approach consisting of five steps: linearization, completion, inflection, contraction, and detokenization. We compare the performance of our linearization algorithm with two external baselines and report results for each step in the pipeline. Furthermore, we perform detailed error analysis revealing correlation between word order freedom and difficulty of the linearization task.
Classical non-neural dependency parsers put considerable effort on the design of feature functions. Especially, they benefit from information coming from structural features, such as features drawn from neighboring tokens in the dependency tree. In contrast, their BiLSTM-based successors achieve state-of-the-art performance without explicit information about the structural context. In this paper we aim to answer the question: How much structural context are the BiLSTM representations able to capture implicitly? We show that features drawn from partial subtrees become redundant when the BiLSTMs are used. We provide a deep insight into information flow in transition- and graph-based neural architectures to demonstrate where the implicit information comes from when the parsers make their decisions. Finally, with model ablations we demonstrate that the structural context is not only present in the models, but it significantly influences their performance.
We present a dependency tree linearization model with two novel components: (1) a tree-structured encoder based on bidirectional Tree-LSTM that propagates information first bottom-up then top-down, which allows each token to access information from the entire tree; and (2) a linguistically motivated head-first decoder that emphasizes the central role of the head and linearizes the subtree by incrementally attaching the dependents on both sides of the head. With the new encoder and decoder, we reach state-of-the-art performance on the Surface Realization Shared Task 2018 dataset, outperforming not only the shared tasks participants, but also previous state-of-the-art systems (Bohnet et al., 2011; Puduppully et al., 2016). Furthermore, we analyze the power of the tree-structured encoder with a probing task and show that it is able to recognize the topological relation between any pair of tokens in a tree.
This paper presents the IMS contribution to the CoNLL 2017 Shared Task. In the preprocessing step we employed a CRF POS/morphological tagger and a neural tagger predicting supertags. On some languages, we also applied word segmentation with the CRF tagger and sentence segmentation with a perceptron-based parser. For parsing we took an ensemble approach by blending multiple instances of three parsers with very different architectures. Our system achieved the third place overall and the second place for the surprise languages.
We present a general-purpose tagger based on convolutional neural networks (CNN), used for both composing word vectors and encoding context information. The CNN tagger is robust across different tagging tasks: without task-specific tuning of hyper-parameters, it achieves state-of-the-art results in part-of-speech tagging, morphological tagging and supertagging. The CNN tagger is also robust against the out-of-vocabulary problem; it performs well on artificially unnormalized texts.
We present a systematic analysis of lexicalized vs. delexicalized parsing in low-resource scenarios, and propose a methodology to choose one method over another under certain conditions. We create a set of simulation experiments on 41 languages and apply our findings to 9 low-resource languages. Experimental results show that our methodology chooses the best approach in 8 out of 9 cases.