Armand Joulin


2024

pdf bib
Time Sensitive Knowledge Editing through Efficient Finetuning
Xiou Ge | Ali Mousavi | Edouard Grave | Armand Joulin | Kun Qian | Benjamin Han | Mostafa Arefiyan | Yunyao Li
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Large Language Models (LLMs) have demonstrated impressive capability in different tasks and are bringing transformative changes to many domains. However, keeping the knowledge in LLMs up-to-date remains a challenge once pretraining is complete. It is thus essential to design effective methods to both update obsolete knowledge and induce new knowledge into LLMs. Existing locate-and-edit knowledge editing (KE) method suffers from two limitations. First, the post-edit LLMs by such methods generally have poor capability in answering complex queries that require multi-hop reasoning. Second, the long run-time of such locate-and-edit methods to perform knowledge edits make it infeasible for large scale KE in practice. In this paper, we explore Parameter-Efficient Fine-Tuning (PEFT) techniques as an alternative for KE. We curate a more comprehensive temporal KE dataset with both knowledge update and knowledge injection examples for KE performance benchmarking. We further probe the effect of fine-tuning on a range of layers in an LLM for the multi-hop QA task. We find that PEFT performs better than locate-and-edit techniques for time-sensitive knowledge edits.

2021

pdf bib
CCMatrix: Mining Billions of High-Quality Parallel Sentences on the Web
Holger Schwenk | Guillaume Wenzek | Sergey Edunov | Edouard Grave | Armand Joulin | Angela Fan
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

We show that margin-based bitext mining in a multilingual sentence space can be successfully scaled to operate on monolingual corpora of billions of sentences. We use 32 snapshots of a curated common crawl corpus (Wenzel et al, 2019) totaling 71 billion unique sentences. Using one unified approach for 90 languages, we were able to mine 10.8 billion parallel sentences, out of which only 2.9 billions are aligned with English. We illustrate the capability of our scalable mining system to create high quality training sets from one language to any other by training hundreds of different machine translation models and evaluating them on the many-to-many TED benchmark. Further, we evaluate on competitive translation benchmarks such as WMT and WAT. Using only mined bitext, we set a new state of the art for a single system on the WMT’19 test set for English-German/Russian/Chinese. In particular, our English/German and English/Russian systems outperform the best single ones by over 4 BLEU points and are on par with best WMT’19 systems, which train on the WMT training data and augment it with backtranslation. We also achieve excellent results for distant languages pairs like Russian/Japanese, outperforming the best submission at the 2020 WAT workshop. All of the mined bitext will be freely available.

2020

pdf bib
Target Conditioning for One-to-Many Generation
Marie-Anne Lachaux | Armand Joulin | Guillaume Lample
Findings of the Association for Computational Linguistics: EMNLP 2020

Neural Machine Translation (NMT) models often lack diversity in their generated translations, even when paired with search algorithm, like beam search. A challenge is that the diversity in translations are caused by the variability in the target language, and cannot be inferred from the source sentence alone. In this paper, we propose to explicitly model this one-to-many mapping by conditioning the decoder of a NMT model on a latent variable that represents the domain of target sentences. The domain is a discrete variable generated by a target encoder that is jointly trained with the NMT model. The predicted domain of target sentences are given as input to the decoder during training. At inference, we can generate diverse translations by decoding with different domains. Unlike our strongest baseline (Shen et al., 2019), our method can scale to any number of domains without affecting the performance or the training time. We assess the quality and diversity of translations generated by our model with several metrics, on three different datasets.

pdf bib
CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data
Guillaume Wenzek | Marie-Anne Lachaux | Alexis Conneau | Vishrav Chaudhary | Francisco Guzmán | Armand Joulin | Edouard Grave
Proceedings of the Twelfth Language Resources and Evaluation Conference

Pre-training text representations have led to significant improvements in many areas of natural language processing. The quality of these models benefits greatly from the size of the pretraining corpora as long as its quality is preserved. In this paper, we describe an automatic pipeline to extract massive high-quality monolingual datasets from Common Crawl for a variety of languages. Our pipeline follows the data processing introduced in fastText (Mikolov et al., 2017; Grave et al., 2018), that deduplicates documents and identifies their language. We augment this pipeline with a filtering step to select documents that are close to high quality corpora like Wikipedia.

2019

pdf bib
Cooperative Learning of Disjoint Syntax and Semantics
Serhii Havrylov | Germán Kruszewski | Armand Joulin
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

There has been considerable attention devoted to models that learn to jointly infer an expression’s syntactic structure and its semantics. Yet, Nangia and Bowman (2018) has recently shown that the current best systems fail to learn the correct parsing strategy on mathematical expressions generated from a simple context-free grammar. In this work, we present a recursive model inspired by Choi et al. (2018) that reaches near perfect accuracy on this task. Our model is composed of two separated modules for syntax and semantics. They are cooperatively trained with standard continuous and discrete optimisation schemes. Our model does not require any linguistic structure for supervision, and its recursive nature allows for out-of-domain generalisation. Additionally, our approach performs competitively on several natural language tasks, such as Natural Language Inference and Sentiment Analysis.

pdf bib
Adaptive Attention Span in Transformers
Sainbayar Sukhbaatar | Edouard Grave | Piotr Bojanowski | Armand Joulin
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We propose a novel self-attention mechanism that can learn its optimal attention span. This allows us to extend significantly the maximum context size used in Transformer, while maintaining control over their memory footprint and computational time. We show the effectiveness of our approach on the task of character level language modeling, where we achieve state-of-the-art performances on text8 and enwiki8 by using a maximum context of 8k characters.

pdf bib
Training Hybrid Language Models by Marginalizing over Segmentations
Edouard Grave | Sainbayar Sukhbaatar | Piotr Bojanowski | Armand Joulin
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

In this paper, we study the problem of hybrid language modeling, that is using models which can predict both characters and larger units such as character ngrams or words. Using such models, multiple potential segmentations usually exist for a given string, for example one using words and one using characters only. Thus, the probability of a string is the sum of the probabilities of all the possible segmentations. Here, we show how it is possible to marginalize over the segmentations efficiently, in order to compute the true probability of a sequence. We apply our technique on three datasets, comprising seven languages, showing improvements over a strong character level language model.

2018

pdf bib
Loss in Translation: Learning Bilingual Word Mapping with a Retrieval Criterion
Armand Joulin | Piotr Bojanowski | Tomas Mikolov | Hervé Jégou | Edouard Grave
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Continuous word representations learned separately on distinct languages can be aligned so that their words become comparable in a common space. Existing works typically solve a quadratic problem to learn a orthogonal matrix aligning a bilingual lexicon, and use a retrieval criterion for inference. In this paper, we propose an unified formulation that directly optimizes a retrieval criterion in an end-to-end fashion. Our experiments on standard benchmarks show that our approach outperforms the state of the art on word translation, with the biggest improvements observed for distant language pairs such as English-Chinese.

pdf bib
Advances in Pre-Training Distributed Word Representations
Tomas Mikolov | Edouard Grave | Piotr Bojanowski | Christian Puhrsch | Armand Joulin
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib
Learning Word Vectors for 157 Languages
Edouard Grave | Piotr Bojanowski | Prakhar Gupta | Armand Joulin | Tomas Mikolov
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

2017

pdf bib
Bag of Tricks for Efficient Text Classification
Armand Joulin | Edouard Grave | Piotr Bojanowski | Tomas Mikolov
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers

This paper explores a simple and efficient baseline for text classification. Our experiments show that our fast text classifier fastText is often on par with deep learning classifiers in terms of accuracy, and many orders of magnitude faster for training and evaluation. We can train fastText on more than one billion words in less than ten minutes using a standard multicore CPU, and classify half a million sentences among 312K classes in less than a minute.

pdf bib
Enriching Word Vectors with Subword Information
Piotr Bojanowski | Edouard Grave | Armand Joulin | Tomas Mikolov
Transactions of the Association for Computational Linguistics, Volume 5

Continuous word representations, trained on large unlabeled corpora are useful for many natural language processing tasks. Popular models that learn such representations ignore the morphology of words, by assigning a distinct vector to each word. This is a limitation, especially for languages with large vocabularies and many rare words. In this paper, we propose a new approach based on the skipgram model, where each word is represented as a bag of character n-grams. A vector representation is associated to each character n-gram; words being represented as the sum of these representations. Our method is fast, allowing to train models on large corpora quickly and allows us to compute word representations for words that did not appear in the training data. We evaluate our word representations on nine different languages, both on word similarity and analogy tasks. By comparing to recently proposed morphological word representations, we show that our vectors achieve state-of-the-art performance on these tasks.