Dense video captioning aims to identify the events of interest in an input video, and generate descriptive captions for each event. Previous approaches usually follow a two-stage generative process, which first proposes a segment for each event, then renders a caption for each identified segment. Recent advances in large-scale sequence generation pretraining have seen great success in unifying task formulation for a great variety of tasks, but so far, more complex tasks such as dense video captioning are not able to fully utilize this powerful paradigm. In this work, we show how to model the two subtasks of dense video captioning jointly as one sequence generation task, and simultaneously predict the events and the corresponding descriptions. Experiments on YouCook2 and ViTT show encouraging results and indicate the feasibility of training complex tasks such as end-to-end dense video captioning integrated into large-scale pretrained models.
Training large-scale image captioning (IC) models demands access to a rich and diverse set of training examples that are expensive to curate both in terms of time and man-power. Instead, alt-text based captions gathered from the web is a far cheaper alternative to scale with the downside of being noisy. Recent modeling approaches to IC often fall short in terms of performance in leveraging these noisy datasets in favor of clean annotations. We address this problem with a simple yet effective technique of breaking down the task into two smaller, more controllable tasks – skeleton prediction and skeleton-based caption generation. Specifically, we show that sub-selecting content words as skeletons helps in generating improved and denoised captions when leveraging rich yet noisy alt-text–based uncurated datasets. We also show that the predicted English skeletons can further cross-lingually be leveraged to generate non-English captions, and present experimental results covering caption generation in French, Italian, German, Spanish and Hindi. We also show that skeleton-based prediction allows for better control of certain caption properties, such as length, content, and gender expression, providing a handle to perform human-in-the-loop interpretable semi-automatic corrections.
Research in massively multilingual image captioning has been severely hampered by a lack of high-quality evaluation datasets. In this paper we present the Crossmodal-3600 dataset (XM3600 in short), a geographically diverse set of 3600 images annotated with human-generated reference captions in 36 languages. The images were selected from across the world, covering regions where the 36 languages are spoken, and annotated with captions that achieve consistency in terms of style across all languages, while avoiding annotation artifacts due to direct translation. We apply this benchmark to model selection for massively multilingual image captioning models, and show superior correlation results with human evaluations when using XM3600 as golden references for automatic metrics.
Automatic image captioning has improved significantly over the last few years, but the problem is far from being solved, with state of the art models still often producing low quality captions when used in the wild. In this paper, we focus on the task of Quality Estimation (QE) for image captions, which attempts to model the caption quality from a human perspective and *without* access to ground-truth references, so that it can be applied at prediction time to detect low-quality captions produced on *previously unseen images*. For this task, we develop a human evaluation process that collects coarse-grained caption annotations from crowdsourced users, which is then used to collect a large scale dataset spanning more than 600k caption quality ratings. We then carefully validate the quality of the collected ratings and establish baseline models for this new QE task. Finally, we further collect fine-grained caption quality annotations from trained raters, and use them to demonstrate that QE models trained over the coarse ratings can effectively detect and filter out low-quality image captions, thereby improving the user experience from captioning systems.
Cross-modal language generation tasks such as image captioning are directly hurt in their ability to support non-English languages by the trend of data-hungry models combined with the lack of non-English annotations. We investigate potential solutions for combining existing language-generation annotations in English with translation capabilities in order to create solutions at web-scale in both domain and language coverage. We describe an approach called Pivot-Language Generation Stabilization (PLuGS), which leverages directly at training time both existing English annotations (gold data) as well as their machine-translated versions (silver data); at run-time, it generates first an English caption and then a corresponding target-language caption. We show that PLuGS models outperform other candidate solutions in evaluations performed over 5 different target languages, under a large-domain testset using images from the Open Images dataset. Furthermore, we find an interesting effect where the English captions generated by the PLuGS models are better than the captions generated by the original, monolingual English model.