Generic text summarization approaches often fail to address the specific intent and needs of individual users. Recently, scholarly attention has turned to the development of summarization methods that are more closely tailored and controlled to align with specific objectives and user needs. Despite a growing corpus of controllable summarization research, there is no comprehensive survey available that thoroughly explores the diverse controllable attributes employed in this context, delves into the associated challenges, and investigates the existing solutions. In this survey, we formalize the Controllable Text Summarization (CTS) task, categorize controllable attributes according to their shared characteristics and objectives, and present a thorough examination of existing datasets and methods within each category. Moreover, based on our findings, we uncover limitations and research gaps, while also exploring potential solutions and future directions for CTS. We release our detailed analysis of CTS papers at https://github.com/ashokurlana/controllable_text_summarization_survey.
Generative Large Language Models (LLMs) have achieved remarkable advances in various NLP tasks. In this work, our aim is to explore the multilingual capabilities of large language models by using machine translation as a task involving English and 22 Indian languages. We first investigate the translation capabilities of raw large-language models, followed by exploring the in-context learning capabilities of the same raw models. We fine-tune these large language models using parameter-efficient fine-tuning methods such as LoRA and additionally with full fine-tuning. Through our study, we have identified the model that performs best among the large language models available for the translation task.Our results demonstrate significant progress, with average BLEU scores of 13.42, 15.93, 12.13, 12.30, and 12.07, as well as chrF scores of 43.98, 46.99, 42.55, 42.42, and 45.39, respectively, using two-stage fine-tuned LLaMA-13b for English to Indian languages on IN22 (conversational), IN22 (general), flores200-dev, flores200-devtest, and newstest2019 testsets. Similarly, for Indian languages to English, we achieved average BLEU scores of 14.03, 16.65, 16.17, 15.35 and 12.55 along with chrF scores of 36.71, 40.44, 40.26, 39.51, and 36.20, respectively, using fine-tuned LLaMA-13b on IN22 (conversational), IN22 (general), flores200-dev, flores200-devtest and newstest2019 testsets. Overall, our findings highlight the potential and strength of large language models for machine translation capabilities, including languages that are currently underrepresented in LLMs.
Obtaining sufficient information in one’s mother tongue is crucial for satisfying the information needs of the users. While high-resource languages have abundant online resources, the situation is less than ideal for very low-resource languages. Moreover, the insufficient reporting of vital national and international events continues to be a worry, especially in languages with scarce resources, like Mizo. In this paper, we conduct a study to investigate the effectiveness of a simple methodology designed to generate a holistic summary for Mizo news articles, which leverages English-language news to supplement and enhance the information related to the corresponding news events. Furthermore, we make available 500 Mizo news articles and corresponding enriched holistic summaries. Human evaluation confirms that our approach significantly enhances the information coverage of Mizo news articles.
The Large Language Models (LLMs) exhibit remarkable ability to generate fluent content across a wide spectrum of user queries. However, this capability has raised concerns regarding misinformation and personal information leakage. In this paper, we present our methods for the SemEval2024 Task8, aiming to detect machine-generated text across various domains in both mono-lingual and multi-lingual contexts. Our study comprehensively analyzes various methods to detect machine-generated text, including statistical, neural, and pre-trained model approaches. We also detail our experimental setup and perform a in-depth error analysis to evaluate the effectiveness of these methods. Our methods obtain an accuracy of 86.9% on the test set of subtask-A mono and 83.7% for subtask-B. Furthermore, we also highlight the challenges and essential factors for consideration in future studies.
This paper introduces PMIndiaSum, a multilingual and massively parallel summarization corpus focused on languages in India. Our corpus provides a training and testing ground for four language families, 14 languages, and the largest to date with 196 language pairs. We detail our construction workflow including data acquisition, processing, and quality assurance. Furthermore, we publish benchmarks for monolingual, cross-lingual, and multilingual summarization by fine-tuning, prompting, as well as translate-and-summarize. Experimental results confirm the crucial role of our data in aiding summarization between Indian languages. Our dataset is publicly available and can be freely modified and re-distributed.
Cross-lingual summarization involves the sum marization of text written in one language to a different one. There is a body of research addressing cross-lingual summarization from English to other European languages. In this work, we aim to perform cross-lingual summarization from English to Hindi. We propose pairing up the coverage of newsworthy events in textual and video format can prove to be helpful for data acquisition for cross lingual summarization. We analyze the data and propose methods to match articles to video descriptions that serve as document and summary pairs. We also outline filtering methods over reasonable thresholds to ensure the correctness of the summaries. Further, we make available 28,583 mono and cross-lingual article-summary pairs* . We also build and analyze multiple baselines on the collected data and report error analysis.
Expert human annotation for summarization is definitely an expensive task, and can not be done on huge scales. But with this work, we show that even with a crowd sourced summary generation approach, quality can be controlled by aggressive expert informed filtering and sampling-based human evaluation. We propose a pipeline that crowd-sources summarization data and then aggressively filters the content via: automatic and partial expert evaluation. Using this pipeline we create a high-quality Telugu Abstractive Summarization dataset (TeSum) which we validate with sampling-based human evaluation. We also provide baseline numbers for various models commonly used for summarization. A number of recently released datasets for summarization, scraped the web-content relying on the assumption that summary is made available with the article by the publishers. While this assumption holds for multiple resources (or news-sites) in English, it should not be generalised across languages without thorough analysis and verification. Our analysis clearly shows that this assumption does not hold true for most Indian language news resources. We show that our proposed filtration pipeline can even be applied to these large-scale scraped datasets to extract better quality article-summary pairs.
The MuP-2022 shared task focuses on multiperspective scientific document summarization. Given a scientific document, with multiple reference summaries, our goal was to develop a model that can produce a generic summary covering as many aspects of the document as covered by all of its reference summaries. This paper describes our best official model, a finetuned BART-large, along with a discussion on the challenges of this task and some of our unofficial models including SOTA generation models. Our submitted model out performedthe given, MuP 2022 shared task, baselines on ROUGE-2, ROUGE-L and average ROUGE F1-scores. Code of our submission can be ac- cessed here.