We present the overview of the CLPsych 2024 Shared Task, focusing on leveraging open source Large Language Models (LLMs) for identifying textual evidence that supports the suicidal risk level of individuals on Reddit. In particular, given a Reddit user, their pre- determined suicide risk level (‘Low’, ‘Mod- erate’ or ‘High’) and all of their posts in the r/SuicideWatch subreddit, we frame the task of identifying relevant pieces of text in their posts supporting their suicidal classification in two ways: (a) on the basis of evidence highlighting (extracting sub-phrases of the posts) and (b) on the basis of generating a summary of such evidence. We annotate a sample of 125 users and introduce evaluation metrics based on (a) BERTScore and (b) natural language inference for the two sub-tasks, respectively. Finally, we provide an overview of the system submissions and summarise the key findings.
We introduce a hybrid abstractive summarisation approach combining hierarchical VAEs with LLMs to produce clinically meaningful summaries from social media user timelines, appropriate for mental health monitoring. The summaries combine two different narrative points of view: (a) clinical insights in third person, generated by feeding into an LLM clinical expert-guided prompts, and importantly, (b) a temporally sensitive abstractive summary of the user’s timeline in first person, generated by a novel hierarchical variational autoencoder, TH-VAE. We assess the generated summaries via automatic evaluation against expert summaries and via human evaluation with clinical experts, showing that timeline summarisation by TH-VAE results in more factual and logically coherent summaries rich in clinical utility and superior to LLM-only approaches in capturing changes over time.
Natural Language Processing (NLP) can advance psychotherapy research by scaling up therapy dialogue analysis as well as by allowing researchers to examine client-therapist interactions in detail. Previous studies have mainly either explored the clients’ behavior or the therapists’ intervention in dialogues. Yet, modelling conversations from both dialogue participants is crucial to understanding the therapeutic interaction. This study explores speaker contribution-based dialogue acts at the utterance-level; i.e, the therapist - Intervention Prediction (IP) and the client - Emotion Recognition (ER) in psychotherapy using a pan-theoretical schema. We perform experiments with fine-tuned language models and light-weight adapter solutions on a Hebrew dataset. We deploy the results from our ER model predictions in investigating the coherence between client self-reports on emotion and the utterance-level emotions. Our best adapters achieved on-par performance with fully fine-tuned models, at 0.64 and 0.66 micro F1 for IP and ER, respectively. In addition, our analysis identifies ambiguities within categorical clinical coding, which can be used to fine-tune the coding schema. Finally, our results indicate a positive correlation between client self-reports and utterance-level emotions.
We study the phenomenon of linguistic synchrony between clients and therapists in a psychotherapy process. Linguistic Synchrony (LS) can be viewed as any observed interdependence or association between more than one person?s linguistic behavior. Accordingly, we establish LS as a methodological task. We suggest a LS function that applies a linguistic similarity measure based on the Jensen-Shannon distance across the observed part-of-speech tag distributions (JSDuPos) of the speakers in different time frames. We perform a study over a unique corpus of 872 transcribed sessions, covering 68 clients and 59 therapists. After establishing the presence of client-therapist LS, we verify its association with therapeutic alliance and treatment outcome (measured using WAI and ORS), and additionally analyse the behavior of JSDuPos throughout treatment. Results indicate that (1) higher linguistic similarity at the session level associates with higher therapeutic alliance as reported by the client and therapist at the end of the session, (2) higher linguistic similarity at the session level associates with higher level of treatment outcome as reported by the client at the beginnings of the next sessions, (3) there is a significant linear increase in linguistic similarity throughout treatment, (4) surprisingly, higher LS associates with lower treatment outcome. Finally, we demonstrate how the LS function can be used to interpret and explore the mechanism for synchrony.
We provide an overview of the CLPsych 2022 Shared Task, which focusses on the automatic identification of ‘Moments of Change’ in lon- gitudinal posts by individuals on social media and its connection with information regarding mental health . This year’s task introduced the notion of longitudinal modelling of the text generated by an individual online over time, along with appropriate temporally sen- sitive evaluation metrics. The Shared Task con- sisted of two subtasks: (a) the main task of cap- turing changes in an individual’s mood (dras- tic changes-‘Switches’- and gradual changes -‘Escalations’- on the basis of textual content shared online; and subsequently (b) the sub- task of identifying the suicide risk level of an individual – a continuation of the CLPsych 2019 Shared Task– where participants were encouraged to explore how the identification of changes in mood in task (a) can help with assessing suicidality risk in task (b).
We introduce a large set of Hebrew lexicons pertaining to psychological aspects. These lexicons are useful for various psychology applications such as detecting emotional state, well being, relationship quality in conversation, identifying topics (e.g., family, work) and many more. We discuss the challenges in creating and validating lexicons in a new language, and highlight our methodological considerations in the data-driven lexicon construction process. Most of the lexicons are publicly available, which will facilitate further research on Hebrew clinical psychology text analysis. The lexicons were developed through data driven means, and verified by domain experts, clinical psychologists and psychology students, in a process of reconciliation with three judges. Development and verification relied on a dataset of a total of 872 psychotherapy session transcripts. We describe the construction process of each collection, the final resource and initial results of research studies employing this resource.
We present the first work on automatically capturing alliance rupture in transcribed therapy sessions, trained on the text and self-reported rupture scores from both therapists and clients. Our NLP baseline outperforms a strong majority baseline by a large margin and captures client reported ruptures unidentified by therapists in 40% of such cases.