Daniel Simig


2023

pdf bib
Understanding In-Context Learning via Supportive Pretraining Data
Xiaochuang Han | Daniel Simig | Todor Mihaylov | Yulia Tsvetkov | Asli Celikyilmaz | Tianlu Wang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In-context learning (ICL) improves language models’ performance on a variety of NLP tasks by simply demonstrating a handful of examples at inference time. It is not well understood why ICL ability emerges, as the model has never been specifically trained on such demonstrations. Unlike prior work that explores implicit mechanisms behind ICL, we study ICL via investigating the pretraining data. Specifically, we first adapt an iterative, gradient-based approach to find a small subset of pretraining data that supports ICL. We observe that a continued pretraining on this small subset significantly improves the model’s ICL ability, by up to 18%. We then compare the supportive subset constrastively with random subsets of pretraining data and discover: (1) The supportive pretraining data to ICL do not have a higher domain relevance to downstream tasks. (2) The supportive pretraining data have a higher mass of rarely occurring, long-tail tokens. (3) The supportive pretraining data are challenging examples where the information gain from long-range context is below average, indicating learning to incorporate difficult long-range context encourages ICL. Our work takes a first step towards understanding ICL via analyzing instance-level pretraining data. Our insights have a potential to enhance the ICL ability of language models by actively guiding the construction of pretraining data in the future.

2022

pdf bib
Text Characterization Toolkit (TCT)
Daniel Simig | Tianlu Wang | Verna Dankers | Peter Henderson | Khuyagbaatar Batsuren | Dieuwke Hupkes | Mona Diab
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing: System Demonstrations

We present a tool, Text Characterization Toolkit (TCT), that researchers can use to study characteristics of large datasets. Furthermore, such properties can lead to understanding the influence of such attributes on models’ behaviour. Traditionally, in most NLP research, models are usually evaluated by reporting single-number performance scores on a number of readily available benchmarks, without much deeper analysis. Here, we argue that – especially given the well-known fact that benchmarks often contain biases, artefacts, and spurious correlations – deeper results analysis should become the de-facto standard when presenting new models or benchmarks. TCT aims at filling this gap by facilitating such deeper analysis for datasets at scale, where datasets can be for training/development/evaluation. TCT includes both an easy-to-use tool, as well as off-the-shelf scripts that can be used for specific analyses. We also present use-cases from several different domains. TCT is used to predict difficult examples for given well-known trained models; TCT is also used to identify (potentially harmful) biases present in a dataset.

pdf bib
Few-shot Learning with Multilingual Generative Language Models
Xi Victoria Lin | Todor Mihaylov | Mikel Artetxe | Tianlu Wang | Shuohui Chen | Daniel Simig | Myle Ott | Naman Goyal | Shruti Bhosale | Jingfei Du | Ramakanth Pasunuru | Sam Shleifer | Punit Singh Koura | Vishrav Chaudhary | Brian O’Horo | Jeff Wang | Luke Zettlemoyer | Zornitsa Kozareva | Mona Diab | Veselin Stoyanov | Xian Li
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Large-scale generative language models such as GPT-3 are competitive few-shot learners. While these models are known to be able to jointly represent many different languages, their training data is dominated by English, potentially limiting their cross-lingual generalization. In this work, we train multilingual generative language models on a corpus covering a diverse set of languages, and study their few- and zero-shot learning capabilities in a wide range of tasks. Our largest model with 7.5 billion parameters sets new state of the art in few-shot learning in more than 20 representative languages, outperforming GPT-3 of comparable size in multilingual commonsense reasoning (with +7.4% absolute accuracy improvement in 0-shot settings and +9.4% in 4-shot settings) and natural language inference (+5.4% in each of 0-shot and 4-shot settings). On the FLORES-101 machine translation benchmark, our model outperforms GPT-3 on 171 out of 182 directions with 32 training examples, while surpassing the official supervised baseline in 45 directions. We conduct an in-depth analysis of different multilingual prompting approaches, showing in particular that strong few-shot learning performance across languages can be achieved via cross-lingual transfer through both templates and demonstration examples.

pdf bib
Open Vocabulary Extreme Classification Using Generative Models
Daniel Simig | Fabio Petroni | Pouya Yanki | Kashyap Popat | Christina Du | Sebastian Riedel | Majid Yazdani
Findings of the Association for Computational Linguistics: ACL 2022

The extreme multi-label classification (XMC) task aims at tagging content with a subset of labels from an extremely large label set. The label vocabulary is typically defined in advance by domain experts and assumed to capture all necessary tags. However in real world scenarios this label set, although large, is often incomplete and experts frequently need to refine it. To develop systems that simplify this process, we introduce the task of open vocabulary XMC (OXMC): given a piece of content, predict a set of labels, some of which may be outside of the known tag set. Hence, in addition to not having training data for some labels–as is the case in zero-shot classification–models need to invent some labels on-thefly. We propose GROOV, a fine-tuned seq2seq model for OXMC that generates the set of labels as a flat sequence and is trained using a novel loss independent of predicted label order. We show the efficacy of the approach, experimenting with popular XMC datasets for which GROOV is able to predict meaningful labels outside the given vocabulary while performing on par with state-of-the-art solutions for known labels.