Dehong Ma


2024

pdf bib
UEGP: Unified Expert-Guided Pre-training for Knowledge Rekindle
Yutao Mou | Kexiang Wang | Jianhe Lin | Dehong Ma | Jun Fan | Daiting Shi | Zhicong Cheng | Gu Simiu | Dawei Yin | Weiran Xu
Findings of the Association for Computational Linguistics: NAACL 2024

Pre-training and fine-tuning framework has become the standard training paradigm for NLP tasks and is also widely used in industrial-level applications. However, there are still a limitation with this paradigm: simply fine-tuning with task-specific objectives tends to converge to local minima, resulting in a sub-optimal performance. In this paper, we first propose a new paradigm: knowledge rekindle, which aims to re-incorporate the fine-tuned expert model into the training cycle and break through the performance upper bounds of experts without introducing additional annotated data. Then we further propose a unified expert-guided pre-training (UEGP) framework for knowledge rekindle. Specifically, we reuse fine-tuned expert models for various downstream tasks as knowledge sources and inject task-specific prior knowledge to pre-trained language models (PLMs) by means of knowledge distillation. In this process, we perform multi-task learning with knowledge distillation and masked language modeling (MLM) objectives. We also further explored whether mixture-of-expert guided pre-training (MoEGP) can further enhance the effect of knowledge rekindle. Experiments and analysis on eight datasets in GLUE benchmark and a industrial-level search re-ranking dataset show the effectiveness of our method.

2022

pdf bib
PILE: Pairwise Iterative Logits Ensemble for Multi-Teacher Labeled Distillation
Lianshang Cai | Linhao Zhang | Dehong Ma | Jun Fan | Daiting Shi | Yi Wu | Zhicong Cheng | Simiu Gu | Dawei Yin
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track

Pre-trained language models have become a crucial part of ranking systems and achieved very impressive effects recently. To maintain high performance while keeping efficient computations, knowledge distillation is widely used. In this paper, we focus on two key questions in knowledge distillation for ranking models: 1) how to ensemble knowledge from multi-teacher; 2) how to utilize the label information of data in the distillation process. We propose a unified algorithm called Pairwise Iterative Logits Ensemble (PILE) to tackle these two questions simultaneously. PILE ensembles multi-teacher logits supervised by label information in an iterative way and achieved competitive performance in both offline and online experiments. The proposed method has been deployed in a real-world commercial search system.

2021

pdf bib
Do It Once: An Embarrassingly Simple Joint Matching Approach to Response Selection
Linhao Zhang | Dehong Ma | Sujian Li | Houfeng Wang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2019

pdf bib
Exploring Sequence-to-Sequence Learning in Aspect Term Extraction
Dehong Ma | Sujian Li | Fangzhao Wu | Xing Xie | Houfeng Wang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Aspect term extraction (ATE) aims at identifying all aspect terms in a sentence and is usually modeled as a sequence labeling problem. However, sequence labeling based methods cannot make full use of the overall meaning of the whole sentence and have the limitation in processing dependencies between labels. To tackle these problems, we first explore to formalize ATE as a sequence-to-sequence (Seq2Seq) learning task where the source sequence and target sequence are composed of words and labels respectively. At the same time, to make Seq2Seq learning suit to ATE where labels correspond to words one by one, we design the gated unit networks to incorporate corresponding word representation into the decoder, and position-aware attention to pay more attention to the adjacent words of a target word. The experimental results on two datasets show that Seq2Seq learning is effective in ATE accompanied with our proposed gated unit networks and position-aware attention mechanism.

pdf bib
Text Level Graph Neural Network for Text Classification
Lianzhe Huang | Dehong Ma | Sujian Li | Xiaodong Zhang | Houfeng Wang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Recently, researches have explored the graph neural network (GNN) techniques on text classification, since GNN does well in handling complex structures and preserving global information. However, previous methods based on GNN are mainly faced with the practical problems of fixed corpus level graph structure which don’t support online testing and high memory consumption. To tackle the problems, we propose a new GNN based model that builds graphs for each input text with global parameters sharing instead of a single graph for the whole corpus. This method removes the burden of dependence between an individual text and entire corpus which support online testing, but still preserve global information. Besides, we build graphs by much smaller windows in the text, which not only extract more local features but also significantly reduce the edge numbers as well as memory consumption. Experiments show that our model outperforms existing models on several text classification datasets even with consuming less memory.

2018

pdf bib
Joint Learning for Targeted Sentiment Analysis
Dehong Ma | Sujian Li | Houfeng Wang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Targeted sentiment analysis (TSA) aims at extracting targets and classifying their sentiment classes. Previous works only exploit word embeddings as features and do not explore more potentials of neural networks when jointly learning the two tasks. In this paper, we carefully design the hierarchical stack bidirectional gated recurrent units (HSBi-GRU) model to learn abstract features for both tasks, and we propose a HSBi-GRU based joint model which allows the target label to have influence on their sentiment label. Experimental results on two datasets show that our joint learning model can outperform other baselines and demonstrate the effectiveness of HSBi-GRU in learning abstract features.

2017

pdf bib
Cascading Multiway Attentions for Document-level Sentiment Classification
Dehong Ma | Sujian Li | Xiaodong Zhang | Houfeng Wang | Xu Sun
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Document-level sentiment classification aims to assign the user reviews a sentiment polarity. Previous methods either just utilized the document content without consideration of user and product information, or did not comprehensively consider what roles the three kinds of information play in text modeling. In this paper, to reasonably use all the information, we present the idea that user, product and their combination can all influence the generation of attentions to words and sentences, when judging the sentiment of a document. With this idea, we propose a cascading multiway attention (CMA) model, where multiple ways of using user and product information are cascaded to influence the generation of attentions on the word and sentence layers. Then, sentences and documents are well modeled by multiple representation vectors, which provide rich information for sentiment classification. Experiments on IMDB and Yelp datasets demonstrate the effectiveness of our model.