Delong Chen


2025

pdf bib
Linguistic Minimal Pairs Elicit Linguistic Similarity in Large Language Models
Xinyu Zhou | Delong Chen | Samuel Cahyawijaya | Xufeng Duan | Zhenguang Cai
Proceedings of the 31st International Conference on Computational Linguistics

We introduce a novel analysis that leverages linguistic minimal pairs to probe the internal linguistic representations of Large Language Models (LLMs). By measuring the similarity between LLM activation differences across minimal pairs, we quantify the linguistic similarity and gain insight into the linguistic knowledge captured by LLMs. Our large-scale experiments, spanning 100+ LLMs and 150k minimal pairs in three languages, reveal properties of linguistic similarity from four key aspects: consistency across LLMs, relation to theoretical categorizations, dependency to semantic context, and cross-lingual alignment of relevant phenomena. Our findings suggest that 1) linguistic similarity is significantly influenced by training data exposure, leading to higher cross-LLM agreement in higher-resource languages. 2) Linguistic similarity strongly aligns with fine-grained theoretical linguistic categories but weakly with broader ones. 3) Linguistic similarity shows a weak correlation with semantic similarity, showing its context-dependent nature. 4) LLMs exhibit limited cross-lingual alignment in their understanding of relevant linguistic phenomena. This work demonstrates the potential of minimal pairs as a window into the neural representations of language in LLMs, shedding light on the relationship between LLMs and linguistic theory.

2024

pdf bib
LLM Internal States Reveal Hallucination Risk Faced With a Query
Ziwei Ji | Delong Chen | Etsuko Ishii | Samuel Cahyawijaya | Yejin Bang | Bryan Wilie | Pascale Fung
Proceedings of the 7th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP

The hallucination problem of Large Language Models (LLMs) significantly limits their reliability and trustworthiness. Humans have a self-awareness process that allows us to recognize what we don’t know when faced with queries. Inspired by this, our paper investigates whether LLMs can estimate their own hallucination risk before response generation. We analyze the internal mechanisms of LLMs broadly both in terms of training data sources and across 15 diverse Natural Language Generation (NLG) tasks, spanning over 700 datasets. Our empirical analysis reveals two key insights: (1) LLM internal states indicate whether they have seen the query in training data or not; and (2) LLM internal states show they are likely to hallucinate or not regarding the query. Our study explores particular neurons, activation layers, and tokens that play a crucial role in the LLM perception of uncertainty and hallucination risk. By a probing estimator, we leverage LLM self-assessment, achieving an average hallucination estimation accuracy of 84.32% at run time.

pdf bib
Measuring Political Bias in Large Language Models: What Is Said and How It Is Said
Yejin Bang | Delong Chen | Nayeon Lee | Pascale Fung
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We propose to measure political bias in LLMs by analyzing both the content and style of their generated content regarding political issues. Existing benchmarks and measures focus on gender and racial biases. However, political bias exists in LLMs and can lead to polarization and other harms in downstream applications. In order to provide transparency to users, we advocate that there should be fine-grained and explainable measures of political biases generated by LLMs. Our proposed measure looks at different political issues such as reproductive rights and climate change, at both the content (the substance of the generation) and the style (the lexical polarity) of such bias. We measured the political bias in eleven open-sourced LLMs and showed that our proposed framework is easily scalable to other topics and is explainable.

2023

pdf bib
Towards Joint Modeling of Dialogue Response and Speech Synthesis based on Large Language Model
Xinyu Zhou | Delong Chen | Yudong Chen
Proceedings of the 6th International Conference on Natural Language and Speech Processing (ICNLSP 2023)