In this paper, we consider contamination by code generation test sets, in particular in their use in modern large language models.We discuss three possible sources of such contamination and show findings supporting each of them: (i) direct data leakage, (ii) indirect data leakage through the use of synthetic data and (iii) overfitting to evaluation sets during model selection.To address this, we release Less Basic Python Problems (LBPP): an uncontaminated new benchmark of 161 prompts with their associated Python solutions. LBPP is released at https://huggingface.co/datasets/CohereForAI/lbpp
Quantization techniques are widely used to improve inference speed and deployment of large language models. While a wide body of work examines the impact of quantization on LLMs in English, none have evaluated across languages. We conduct a thorough analysis of quantized multilingual LLMs, focusing on performance across languages and at varying scales. We use automatic benchmarks, LLM-as-a-Judge, and human evaluation, finding that (1) harmful effects of quantization are apparent in human evaluation, which automatic metrics severely underestimate: a 1.7% average drop in Japanese across automatic tasks corresponds to a 16.0% drop reported by human evaluators on realistic prompts; (2) languages are disparately affected by quantization, with non-Latin script languages impacted worst; and (3) challenging tasks like mathematical reasoning degrade fastest. As the ability to serve low-compute models is critical for wide global adoption of NLP technologies, our results urge consideration of multilingual performance as a key evaluation criterion for efficient models.
We present BLESS, a comprehensive performance benchmark of the most recent state-of-the-art Large Language Models (LLMs) on the task of text simplification (TS). We examine how well off-the-shelf LLMs can solve this challenging task, assessing a total of 44 models, differing in size, architecture, pre-training methods, and accessibility, on three test sets from different domains (Wikipedia, news, and medical) under a few-shot setting. Our analysis considers a suite of automatic metrics, as well as a large-scale quantitative investigation into the types of common edit operations performed by the different models. Furthermore, we perform a manual qualitative analysis on a subset of model outputs to better gauge the quality of the generated simplifications. Our evaluation indicates that the best LLMs, despite not being trained on TS perform comparably with state-of-the-art TS baselines. Additionally, we find that certain LLMs demonstrate a greater range and diversity of edit operations. Our performance benchmark will be available as a resource for the development of future TS methods and evaluation metrics.
Automated evaluation of text generation systems has recently seen increasing attention, particularly checking whether generated text stays truthful to input sources. Existing methods frequently rely on an evaluation using task-specific language models, which in turn allows for little interpretability of generated scores. We introduce SRLScore, a reference-free evaluation metric designed with text summarization in mind. Our approach generates fact tuples constructed from Semantic Role Labels, applied to both input and summary texts.A final factuality score is computed by an adjustable scoring mechanism, which allows for easy adaption of the method across domains. Correlation with human judgments on English summarization datasets shows that SRLScore is competitive with state-of-the-art methods and exhibits stable generalization across datasets without requiring further training or hyperparameter tuning. We experiment with an optional co-reference resolution step, but find that the performance boost is mostly outweighed by the additional compute required. Our metric is available online at: https://github.com/heyjing/SRLScore
Previous state-of-the-art models for lexical simplification consist of complex pipelines with several components, each of which requires deep technical knowledge and fine-tuned interaction to achieve its full potential. As an alternative, we describe a frustratingly simple pipeline based on prompted GPT-3 responses, beating competing approaches by a wide margin in settings with few training instances. Our best-performing submission to the English language track of the TSAR-2022 shared task consists of an “ensemble” of six different prompt templates with varying context levels. As a late-breaking result, we further detail a language transfer technique that allows simplification in languages other than English. Applied to the Spanish and Portuguese subset, we achieve state-of-the-art results with only minor modification to the original prompts. Aside from detailing the implementation and setup, we spend the remainder of this work discussing the particularities of prompting and implications for future work. Code for the experiments is available online at https://github.com/dennlinger/TSAR-2022-Shared-Task.
Existing summarization datasets come with two main drawbacks: (1) They tend to focus on overly exposed domains, such as news articles or wiki-like texts, and (2) are primarily monolingual, with few multilingual datasets.In this work, we propose a novel dataset, called EUR-Lex-Sum, based on manually curated document summaries of legal acts from the European Union law platform (EUR-Lex). Documents and their respective summaries exist as cross-lingual paragraph-aligned data in several of the 24 official European languages, enabling access to various cross-lingual and lower-resourced summarization setups. We obtain up to 1,500 document/summary pairs per language, including a subset of 375 cross-lingually aligned legal acts with texts available in *all* 24 languages. In this work, the data acquisition process is detailed and key characteristics of the resource are compared to existing summarization resources. In particular, we illustrate challenging sub-problems and open questions on the dataset that could help the facilitation of future research in the direction of domain-specific cross-lingual summarization.Limited by the extreme length and language diversity of samples, we further conduct experiments with suitable extractive monolingual and cross-lingual baselines for future work. Code for the extraction as well as access to our data and baselines is available online at: [https://github.com/achouhan93/eur-lex-sum](https://github.com/achouhan93/eur-lex-sum).
Traditionally, Text Simplification is treated as a monolingual translation task where sentences between source texts and their simplified counterparts are aligned for training. However, especially for longer input documents, summarizing the text (or dropping less relevant content altogether) plays an important role in the simplification process, which is currently not reflected in existing datasets. Simultaneously, resources for non-English languages are scarce in general and prohibitive for training new solutions. To tackle this problem, we pose core requirements for a system that can jointly summarize and simplify long source documents. We further describe the creation of a new dataset for joint Text Simplification and Summarization based on German Wikipedia and the German children’s encyclopedia “Klexikon”, consisting of almost 2,900 documents. We release a document-aligned version that particularly highlights the summarization aspect, and provide statistical evidence that this resource is well suited to simplification as well. Code and data are available on Github: https://github.com/dennlinger/klexikon
This work presents the entry by the team from Heidelberg University in the CL-SciSumm 2020 shared task at the Scholarly Document Processing workshop at EMNLP 2020. As in its previous iterations, the task is to highlight relevant parts in a reference paper, depending on a citance text excerpt from a citing paper. We participated in tasks 1A (citation identification) and 1B (citation context classification). Contrary to most previous works, we frame Task 1A as a search relevance problem, and introduce a 2-step re-ranking approach, which consists of a preselection based on BM25 in addition to positional document features, and a top-k re-ranking with BERT. For Task 1B, we follow previous submissions in applying methods that deal well with low resources and imbalanced classes.