Dhruv Agarwal
2024
Bring Your Own KG: Self-Supervised Program Synthesis for Zero-Shot KGQA
Dhruv Agarwal
|
Rajarshi Das
|
Sopan Khosla
|
Rashmi Gangadharaiah
Findings of the Association for Computational Linguistics: NAACL 2024
We present BYOKG, a universal question-answering (QA) system that can operate on any knowledge graph (KG), requires no human-annotated training data, and can be ready to use within a day—attributes that are out-of-scope for current KGQA systems. BYOKG draws inspiration from the remarkable ability of humans to comprehend information present in an unseen KG through exploration—starting at random nodes, inspecting the labels of adjacent nodes and edges, and combining them with their prior world knowledge. Exploration in BYOKG leverages an LLM-backed symbolic agent that generates a diverse set of query-program exemplars, which are then used to ground a retrieval-augmented reasoning procedure to synthesize programs for arbitrary questions. BYOKG is effective over both small- and large-scale graphs, showing dramatic gains in zero-shot QA accuracy of 27.89 and 59.88 F1 on GrailQA and MetaQA, respectively. We further find that performance of BYOKG reliably improves with continued exploration as well as improvements in the base LLM, notably outperforming a state-of-the-art fine-tuned model by 7.08 F1 on a sub-sampled zero-shot split of GrailQA. Lastly, we verify our universality claim by evaluating BYOKG on a domain-specific materials science KG and show that it improves zero-shot performance by 46.33 F1.
2023
Machine Reading Comprehension using Case-based Reasoning
Dung Thai
|
Dhruv Agarwal
|
Mudit Chaudhary
|
Wenlong Zhao
|
Rajarshi Das
|
Jay-Yoon Lee
|
Hannaneh Hajishirzi
|
Manzil Zaheer
|
Andrew McCallum
Findings of the Association for Computational Linguistics: EMNLP 2023
We present an accurate and interpretable method for answer extraction in machine reading comprehension that is reminiscent of case-based reasoning (CBR) from classical AI. Our method (CBR-MRC) builds upon the hypothesis that contextualized answers to similar questions share semantic similarities with each other. Given a test question, CBR-MRC first retrieves a set of similar cases from a nonparametric memory and then predicts an answer by selecting the span in the test context that is most similar to the contextualized representations of answers in the retrieved cases. The semi-parametric nature of our approach allows it to attribute a prediction to the specific set of evidence cases, making it a desirable choice for building reliable and debuggable QA systems. We show that CBR-MRC provides high accuracy comparable with large reader models and outperforms baselines by 11.5 and 8.4 EM on NaturalQuestions and NewsQA, respectively. Further, we demonstrate the ability of CBR-MRC in identifying not just the correct answer tokens but also the span with the most relevant supporting evidence. Lastly, we observe that contexts for certain question types show higher lexical diversity than others and find that CBR-MRC is robust to these variations while performance using fully-parametric methods drops.
2022
Entity Linking via Explicit Mention-Mention Coreference Modeling
Dhruv Agarwal
|
Rico Angell
|
Nicholas Monath
|
Andrew McCallum
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
Learning representations of entity mentions is a core component of modern entity linking systems for both candidate generation and making linking predictions. In this paper, we present and empirically analyze a novel training approach for learning mention and entity representations that is based on building minimum spanning arborescences (i.e., directed spanning trees) over mentions and entities across documents to explicitly model mention coreference relationships. We demonstrate the efficacy of our approach by showing significant improvements in both candidate generation recall and linking accuracy on the Zero-Shot Entity Linking dataset and MedMentions, the largest publicly available biomedical dataset. In addition, we show that our improvements in candidate generation yield higher quality re-ranking models downstream, setting a new SOTA result in linking accuracy on MedMentions. Finally, we demonstrate that our improved mention representations are also effective for the discovery of new entities via cross-document coreference.
Search
Fix data
Co-authors
- Rajarshi Das 2
- Andrew Mccallum 2
- Rico Angell 1
- Mudit Chaudhary 1
- Rashmi Gangadharaiah 1
- show all...