Di Niu


2024

pdf bib
Instruction Fusion: Advancing Prompt Evolution through Hybridization
Weidong Guo | Jiuding Yang | Kaitong Yang | Xiangyang Li | Zhuwei Rao | Yu Xu | Di Niu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The fine-tuning of Large Language Models (LLMs) specialized in code generation has seen notable advancements through the use of open-domain coding queries. Despite the successes, existing methodologies like Evol-Instruct encounter performance limitations, impeding further enhancements in code generation tasks. This paper examines the constraints of existing prompt evolution techniques and introduces a novel approach, Instruction Fusion (IF). IF innovatively combines two distinct prompts through a hybridization process, thereby enhancing the evolution of training prompts for code LLMs. Our experimental results reveal that the proposed novel method effectively addresses the shortcomings of prior methods, significantly improving the performance of Code LLMs across five code generation benchmarks, namely HumanEval, HumanEval+, MBPP, MBPP+ and MultiPL-E, which underscore the effectiveness of Instruction Fusion in advancing the capabilities of LLMs in code generation.

pdf bib
PepRec: Progressive Enhancement of Prompting for Recommendation
Yakun Yu | Shi-ang Qi | Baochun Li | Di Niu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

With large language models (LLMs) achieving remarkable breakthroughs in natural language processing (NLP) domains, recent researchers have actively explored the potential of LLMs for recommendation systems by converting the input data into textual sentences through prompt templates. Although semantic knowledge from LLMs can help enrich the content information of items, to date it is still hard for them to achieve comparable performance to traditional deep learning recommendation models, partly due to a lack of ability to leverage collaborative filtering. In this paper, we propose a novel training-free prompting framework, PepRec, which aims to capture knowledge from both content-based filtering and collaborative filtering to boost recommendation performance with LLMs, while providing interpretation for the recommendation. Experiments based on two real-world datasets from different domains show that PepRec significantly outperforms various traditional deep learning recommendation models and prompt-based recommendation systems.

pdf bib
Reassess Summary Factual Inconsistency Detection with Large Language Model
Jiuding Yang | Hui Liu | Weidong Guo | Zhuwei Rao | Yu Xu | Di Niu
Proceedings of the 1st Workshop on Towards Knowledgeable Language Models (KnowLLM 2024)

Ensuring factual consistency between the summary and the original document is paramount in summarization tasks. Consequently, considerable effort has been dedicated to detecting inconsistencies. With the advent of Large Language Models (LLMs), recent studies have begun to leverage their advanced language understanding capabilities for inconsistency detection. However, early attempts have shown that LLMs underperform traditional models due to their limited ability to follow instructions and the absence of an effective detection methodology. In this study, we reassess summary inconsistency detection with LLMs, comparing the performances of GPT-3.5 and GPT-4. To advance research in LLM-based inconsistency detection, we propose SIFiD (Summary Inconsistency Detection with Filtered Document) that identify key sentences within documents by either employing natural language inference or measuring semantic similarity between summaries and documents.

2023

pdf bib
ConFEDE: Contrastive Feature Decomposition for Multimodal Sentiment Analysis
Jiuding Yang | Yakun Yu | Di Niu | Weidong Guo | Yu Xu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multimodal Sentiment Analysis aims to predict the sentiment of video content. Recent research suggests that multimodal sentiment analysis critically depends on learning a good representation of multimodal information, which should contain both modality-invariant representations that are consistent across modalities as well as modality-specific representations. In this paper, we propose ConFEDE, a unified learning framework that jointly performs contrastive representation learning and contrastive feature decomposition to enhance the representation of multimodal information. It decomposes each of the three modalities of a video sample, including text, video frames, and audio, into a similarity feature and a dissimilarity feature, which are learned by a contrastive relation centered around the text. We conducted extensive experiments on CH-SIMS, MOSI and MOSEI to evaluate various state-of-the-art multimodal sentiment analysis methods. Experimental results show that ConFEDE outperforms all baselines on these datasets on a range of metrics.

pdf bib
Exploiting Hierarchically Structured Categories in Fine-grained Chinese Named Entity Recognition
Jiuding Yang | Jinwen Luo | Weidong Guo | Di Niu | Yu Xu
Findings of the Association for Computational Linguistics: ACL 2023

Chinese Named Entity Recognition (CNER) is a widely used technology in various applications. While recent studies have focused on utilizing additional information of the Chinese language and characters to enhance CNER performance, this paper focuses on a specific aspect of CNER known as fine-grained CNER (FG-CNER). FG-CNER involves the use of hierarchical, fine-grained categories (e.g. Person-MovieStar) to label named entities. To promote research in this area, we introduce the FiNE dataset, a dataset for FG-CNER consisting of 30,000 sentences from various domains and containing 67,651 entities in 54 fine-grained flattened hierarchical categories. Additionally, we propose SoftFiNE, a novel approach for FG-CNER that utilizes a custom-designed relevance scoring function based on label structures to learn the potential relevance between different flattened hierarchical labels. Our experimental results demonstrate that the proposed SoftFiNE method outperforms the state-of-the-art baselines on the FiNE dataset. Furthermore, we conduct extensive experiments on three other datasets, including OntoNotes 4.0, Weibo, and Resume, where SoftFiNE achieved state-of-the-art performance on all three datasets.

pdf bib
ConKI: Contrastive Knowledge Injection for Multimodal Sentiment Analysis
Yakun Yu | Mingjun Zhao | Shi-ang Qi | Feiran Sun | Baoxun Wang | Weidong Guo | Xiaoli Wang | Lei Yang | Di Niu
Findings of the Association for Computational Linguistics: ACL 2023

Multimodal Sentiment Analysis leverages multimodal signals to detect the sentiment of a speaker. Previous approaches concentrate on performing multimodal fusion and representation learning based on general knowledge obtained from pretrained models, which neglects the effect of domain-specific knowledge. In this paper, we propose Contrastive Knowledge Injection (ConKI) for multimodal sentiment analysis, where specific-knowledge representations for each modality can be learned together with general knowledge representations via knowledge injection based on an adapter architecture. In addition, ConKI uses a hierarchical contrastive learning procedure performed between knowledge types within every single modality, across modalities within each sample, and across samples to facilitate the effective learning of the proposed representations, hence improving multimodal sentiment predictions. The experiments on three popular multimodal sentiment analysis benchmarks show that ConKI outperforms all prior methods on a variety of performance metrics.

2022

pdf bib
MatRank: Text Re-ranking by Latent Preference Matrix
Jinwen Luo | Jiuding Yang | Weidong Guo | Chenglin Li | Di Niu | Yu Xu
Findings of the Association for Computational Linguistics: EMNLP 2022

Text ranking plays a key role in providing content that best answers user queries. It is usually divided into two sub-tasks to perform efficient information retrieval given a query: text retrieval and text re-ranking. Recent research on pretrained language models (PLM) has demonstrated efficiency and gain on both sub-tasks. However, while existing methods have benefited from pre-trained language models and achieved high recall rates on passage retrieval, the ranking performance still demands further improvement. In this paper, we propose MatRank, which learns to re-rank the text retrieved for a given query by learning to predict the most relevant passage based on a latent preference matrix. Specifically, MatRank uses a PLM to generate an asymmetric latent matrix of relative preference scores between all pairs of retrieved passages. Then, the latent matrix is aggregated row-wise and column-wise to obtain global preferences and predictions of the most relevant passage in two of these directions, respectively. We conduct extensive experiments on MS MACRO, WikiAQ, and SemEval datasets. Experimental results show that MatRank has achieved new state-of-the-art results on these datasets, outperforming all prior methods on ranking performance metrics.

2021

pdf bib
LICHEE: Improving Language Model Pre-training with Multi-grained Tokenization
Weidong Guo | Mingjun Zhao | Lusheng Zhang | Di Niu | Jinwen Luo | Zhenhua Liu | Zhenyang Li | Jianbo Tang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2019

pdf bib
Matching Article Pairs with Graphical Decomposition and Convolutions
Bang Liu | Di Niu | Haojie Wei | Jinghong Lin | Yancheng He | Kunfeng Lai | Yu Xu
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Identifying the relationship between two articles, e.g., whether two articles published from different sources describe the same breaking news, is critical to many document understanding tasks. Existing approaches for modeling and matching sentence pairs do not perform well in matching longer documents, which embody more complex interactions between the enclosed entities than a sentence does. To model article pairs, we propose the Concept Interaction Graph to represent an article as a graph of concepts. We then match a pair of articles by comparing the sentences that enclose the same concept vertex through a series of encoding techniques, and aggregate the matching signals through a graph convolutional network. To facilitate the evaluation of long article matching, we have created two datasets, each consisting of about 30K pairs of breaking news articles covering diverse topics in the open domain. Extensive evaluations of the proposed methods on the two datasets demonstrate significant improvements over a wide range of state-of-the-art methods for natural language matching.