Open domain question answering (ODQA) is a longstanding task aimed at answering factual questions from a large knowledge corpus without any explicit evidence in natural language processing (NLP). Recent works have predominantly focused on improving the answering accuracy and have achieved promising progress. However, higher accuracy often requires more memory consumption and inference latency, which might not necessarily be efficient enough for direct deployment in the real world. Thus, a trade-off between accuracy, memory consumption and processing speed is pursued. In this paper, we will survey recent advancements in the efficiency of ODQA models and conclude core techniques for achieving efficiency. Additionally, we will provide a quantitative analysis of memory cost, query speed, accuracy, and overall performance comparison. Our goal is to keep scholars informed of the latest advancements and open challenges in ODQA efficiency research and contribute to the further development of ODQA efficiency.
It is widely acknowledged that large and sparse models have higher accuracy than small and dense models under the same model size constraints. This motivates us to train a large model and then remove its redundant neurons or weights by pruning. Most existing works pruned the networks in a deterministic way, the performance of which solely depends on a single pruning criterion and thus lacks variety. Instead, in this paper, we propose a model pruning strategy that first generates several pruning masks in a designed random way. Subsequently, along with an effective mask-selection rule, the optimal mask is chosen from the pool of mask candidates. To further enhance efficiency, we introduce an early mask evaluation strategy, mitigating the overhead associated with training multiple masks. Our extensive experiments demonstrate that this approach achieves state-of-the-art performance across eight datasets from GLUE, particularly excelling at high levels of sparsity.
The pruning objective has recently extended beyond accuracy and sparsity to robustness in language models. Despite this, existing methods struggle to enhance robustness against adversarial attacks when continually increasing model sparsity and require a retraining process. As humans step into the era of large language models, these issues become increasingly prominent. This paper proposes that the robustness of language models is proportional to the extent of pre-trained knowledge they encompass. Accordingly, we introduce a post-training pruning strategy designed to faithfully replicate the embedding space and feature space of dense language models, aiming to conserve more pre-trained knowledge during the pruning process. In this setup, each layer’s reconstruction error not only originates from itself but also includes cumulative error from preceding layers, followed by an adaptive rectification. Compared to other state-of-art baselines, our approach demonstrates a superior balance between accuracy, sparsity, robustness, and pruning cost with BERT on datasets SST2, IMDB, and AGNews, marking a significant stride towards robust pruning in language models.
Augmented Language Models (ALMs) empower large language models with the ability to use tools, transforming them into intelligent agents for real-world interactions. However, most existing frameworks for ALMs, to varying degrees, are deficient in the following critical features: flexible customization, collaborative democratization, and holistic evaluation. This paper proposes Gentopia, a lightweight and extensible framework for ALMs. Gentopia allows the flexible customization of agents through simple configurations, seamlessly integrating various language models, task formats, prompting modules, and plugins into a unified paradigm. Furthermore, we establish Gentpool, a public platform enabling the registration and sharing of user-customized agents. Agents registered in Gentpool are composable such that they can be assembled together for agent collaboration, advancing the democratization of artificial intelligence. To ensure high-quality agents, Gentbench, an integral component of Gentpool, is designed to thoroughly evaluate user-customized agents across diverse aspects such as safety, robustness, efficiency, etc. We release Gentopia on Github and will continuously move forward.
Natural language programming automatically generates code based on a user’s text query. Recent solutions are either data-driven or natural language understanding (NLU)-driven. However, the data-driven synthesizer requires a large number of query-code pairs for training, which hinders its application to low-resource programming languages with growing domains whose functionality and grammar can be actively updated. NLU-driven synthesizers solve this problem, but their code generation is slow and their performance rapidly saturates in the presence of ever-increasing data. In this paper, we propose a circular training framework, Colead, which co-evolves both the data-driven synthesizer and the NLU-driven synthesizer to achieve high-quality code generation in the presence of data scarcity and domain growth. The NLU-driven synthesizer generates query-code pairs to update the data-driven synthesizer, which shares a part of its updated model to improve the NLU-driven synthesizers, enabling the co-evolution of both. Experiments show that Colead gives better results than the baselines in the presence of domain growth and data scarcity, and Colead consistently improves the performance of both data-driven and NLU-driven synthesizers over the co-evolvement.
A peer-assessment system allows students to provide feedback on each other’s work. An effective peer assessment system urgently requires helpful reviews to facilitate students to make improvements and progress. Automated evaluation of review helpfulness, with the help of deep learning models and natural language processing techniques, gains much interest in the field of peer assessment. However, collecting labeled data with the “helpfulness” tag to build these prediction models remains challenging. A straightforward solution would be using a supervised learning algorithm to train a prediction model on a similar domain and apply it to our peer review domain for inference. But naively doing so can degrade the model performance in the presence of the distributional gap between domains. Such a distributional gap can be effectively addressed by Domain Adaptation (DA). Self-training has recently been shown as a powerful branch of DA to address the distributional gap. The first goal of this study is to evaluate the performance of self-training-based DA in predicting the helpfulness of peer reviews as well as the ability to overcome the distributional gap. Our second goal is to propose an advanced self-training framework to overcome the weakness of the existing self-training by tailoring knowledge distillation and noise injection, to further improve the model performance and better address the distributional gap.
Conventional wisdom in pruning Transformer-based language models is that pruning reduces the model expressiveness and thus is more likely to underfit rather than overfit. However, under the trending pretrain-and-finetune paradigm, we postulate a counter-traditional hypothesis, that is: pruning increases the risk of overfitting when performed at the fine-tuning phase. In this paper, we aim to address the overfitting problem and improve pruning performance via progressive knowledge distillation with error-bound properties. We show for the first time that reducing the risk of overfitting can help the effectiveness of pruning under the pretrain-and-finetune paradigm. Ablation studies and experiments on the GLUE benchmark show that our method outperforms the leading competitors across different tasks.
Due to recent pretrained multilingual representation models, it has become feasible to exploit labeled data from one language to train a cross-lingual model that can then be applied to multiple new languages. In practice, however, we still face the problem of scarce labeled data, leading to subpar results. In this paper, we propose a novel data augmentation strategy for better cross-lingual natural language inference by enriching the data to reflect more diversity in a semantically faithful way. To this end, we propose two methods of training a generative model to induce synthesized examples, and then leverage the resulting data using an adversarial training regimen for more robustness. In a series of detailed experiments, we show that this fruitful combination leads to substantial gains in cross-lingual inference.
Transformer-based pre-trained language models have significantly improved the performance of various natural language processing (NLP) tasks in the recent years. While effective and prevalent, these models are usually prohibitively large for resource-limited deployment scenarios. A thread of research has thus been working on applying network pruning techniques under the pretrain-then-finetune paradigm widely adopted in NLP. However, the existing pruning results on benchmark transformers, such as BERT, are not as remarkable as the pruning results in the literature of convolutional neural networks (CNNs). In particular, common wisdom in pruning CNN states that sparse pruning technique compresses a model more than that obtained by reducing number of channels and layers, while existing works on sparse pruning of BERT yields inferior results than its small-dense counterparts such as TinyBERT. In this work, we aim to fill this gap by studying how knowledge are transferred and lost during the pre-train, fine-tune, and pruning process, and proposing a knowledge-aware sparse pruning process that achieves significantly superior results than existing literature. We show for the first time that sparse pruning compresses a BERT model significantly more than reducing its number of channels and layers. Experiments on multiple data sets of GLUE benchmark show that our method outperforms the leading competitors with a 20-times weight/FLOPs compression and neglectable loss in prediction accuracy.