Leveraging large language models (LLMs) for various natural language processing tasks has led to superlative claims about their performance. For the evaluation of machine translation (MT), existing research shows that LLMs are able to achieve results comparable to fine-tuned multilingual pre-trained language models. In this paper, we explore what translation information, such as the source, reference, translation errors and annotation guidelines, is needed for LLMs to evaluate MT quality. In addition, we investigate prompting techniques such as zero-shot, Chain of Thought (CoT) and few-shot prompting for eight language pairs covering high-, medium- and low-resource languages, leveraging varying LLM variants. Our findings indicate the importance of reference translations for an LLM-based evaluation. While larger models do not necessarily fare better, they tend to benefit more from CoT prompting, than smaller models. We also observe that LLMs do not always provide a numerical score when generating evaluations, which poses a question on their reliability for the task. Our work presents a comprehensive analysis for resource-constrained and training-less LLM-based evaluation of machine translation. We release the accrued prompt templates, code and data publicly for reproducibility.
The advancement of generative Large Language Models (LLMs), capable of producing human-like texts, introduces challenges related to the authenticity of the text documents. This requires exploring potential forgery scenarios within the context of authorship attribution, especially in the literary domain. Particularly,two aspects of doubted authorship may arise in novels, as a novel may be imposed by a renowned author or include a copied writing style of a well-known novel. To address these concerns, we introduce Forged-GAN-BERT, a modified GANBERT-based model to improve the classification of forged novels in two data-augmentation aspects: via the Forged Novels Generator (i.e., ChatGPT) and the generator in GAN. Compared to other transformer-based models, the proposed Forged-GAN-BERT model demonstrates an improved performance with F1 scores of 0.97 and 0.71 for identifying forged novels in single-author and multi-author classification settings. Additionally, we explore different prompt categories for generating the forged novels to analyse the quality of the generated texts using different similarity distance measures, including ROUGE-1, Jaccard Similarity, Overlap Confident, and Cosine Similarity.
Automatic Post-Editing (APE) systems are prone to over-correction of the Machine Translation (MT) outputs. While Word-level Quality Estimation (QE) system can provide a way to curtail the over-correction, a significant performance gain has not been observed thus far by utilizing existing APE and QE combination strategies. In this paper, we propose joint training of a model on APE and QE tasks to improve the APE. Our proposed approach utilizes a multi-task learning (MTL) methodology, which shows significant improvement while treating both tasks as a ‘bargaining game’ during training. Moreover, we investigate various existing combination strategies and show that our approach achieves state-of-the-art performance for a ‘distant’ language pair, viz., English-Marathi. We observe an improvement of 1.09 TER and 1.37 BLEU points over a baseline QE-Unassisted APE system for English-Marathi, while also observing 0.46 TER and 0.62 BLEU points for English-German. Further, we discuss the results qualitatively and show how our approach helps reduce over-correction, thereby improving the APE performance. We also observe that the degree of integration between QE and APE directly correlates with the APE performance gain. We release our code and models publicly.