Hallucinated translations pose significant threats and safety concerns when it comes to practical deployment of machine translation systems. Previous research works have identified that detectors exhibit complementary performance — different detectors excel at detecting different types of hallucinations. In this paper, we propose to address the limitations of individual detectors by combining them and introducing a straightforward method for aggregating multiple detectors. Our results demonstrate the efficacy of our aggregated detector, providing a promising step towards evermore reliable machine translation systems.
The landscape of available textual adversarial attacks keeps growing, posing severe threats and raising concerns regarding deep NLP systems integrity. However, the crucial problem of defending against malicious attacks has only drawn few attention in the NLP community. The latter is nonetheless instrumental to develop robust and trustworthy systems. This paper makes two important contributions in this line of search: (i) we introduce LAROUSSE, a new framework to detect textual adversarial attacks and (ii) we introduce STAKEOUT, an extended benchmark composed of nine popular attack methods, three datasets and two pre-trained models. LAROUSSE is ready-to-use in production as it is unsupervised, hyperparameter free and non-differentiable, protecting it against gradient-based methods. Our new benchmark STAKEOUT allows for a robust evaluation framework: we conduct extensive numerical experiments which demonstrate that LAROUSSE outperforms previous methods, and which allows to identify interesting factor of detection rate variations.
When working with textual data, a natural application of disentangled representations is the fair classification where the goal is to make predictions without being biased (or influenced) by sensible attributes that may be present in the data (e.g., age, gender or race). Dominant approaches to disentangle a sensitive attribute from textual representations rely on learning simultaneously a penalization term that involves either an adversary loss (e.g., a discriminator) or an information measure (e.g., mutual information). However, these methods require the training of a deep neural network with several parameter updates for each update of the representation model. As a matter of fact, the resulting nested optimization loop is both times consuming, adding complexity to the optimization dynamic, and requires a fine hyperparameter selection (e.g., learning rates, architecture). In this work, we introduce a family of regularizers for learning disentangled representations that do not require training. These regularizers are based on statistical measures of similarity between the conditional probability distributions with respect to the sensible attributes. Our novel regularizers do not require additional training, are faster and do not involve additional tuning while achieving better results both when combined with pretrained and randomly initialized text encoders.
A new metric BaryScore to evaluate text generation based on deep contextualized embeddings (e.g., BERT, Roberta, ELMo) is introduced. This metric is motivated by a new framework relying on optimal transport tools, i.e., Wasserstein distance and barycenter. By modelling the layer output of deep contextualized embeddings as a probability distribution rather than by a vector embedding; this framework provides a natural way to aggregate the different outputs through the Wasserstein space topology. In addition, it provides theoretical grounds to our metric and offers an alternative to available solutions (e.g., MoverScore and BertScore). Numerical evaluation is performed on four different tasks: machine translation, summarization, data2text generation and image captioning. Our results show that BaryScore outperforms other BERT based metrics and exhibits more consistent behaviour in particular for text summarization.