Haowei Zhang


2023

pdf bib
Investigating Table-to-Text Generation Capabilities of Large Language Models in Real-World Information Seeking Scenarios
Yilun Zhao | Haowei Zhang | Shengyun Si | Linyong Nan | Xiangru Tang | Arman Cohan
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track

Tabular data is prevalent across various industries, necessitating significant time and effort for users to understand and manipulate for their information-seeking purposes. The advancements in large language models (LLMs) have shown enormous potential to improve user efficiency. However, the adoption of LLMs in real-world applications for table information seeking remains underexplored. In this paper, we investigate the table-to-text capabilities of different LLMs using four datasets within two real-world information seeking scenarios. These include the LogicNLG and our newly-constructed LoTNLG datasets for data insight generation, along with the FeTaQA and our newly-constructed F2WTQ datasets for query-based generation. We structure our investigation around three research questions, evaluating the performance of LLMs in table-to-text generation, automated evaluation, and feedback generation, respectively. Experimental results indicate that the current high-performing LLM, specifically GPT-4, can effectively serve as a table-to-text generator, evaluator, and feedback generator, facilitating users’ information seeking purposes in real-world scenarios. However, a significant performance gap still exists between other open-sourced LLMs (e.g., Vicuna and LLaMA-2) and GPT-4 models. Our data and code are publicly available at https://github.com/yale-nlp/LLM-T2T.

2017

pdf bib
YNU-HPCC at SemEval 2017 Task 4: Using A Multi-Channel CNN-LSTM Model for Sentiment Classification
Haowei Zhang | Jin Wang | Jixian Zhang | Xuejie Zhang
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)

In this paper, we propose a multi-channel convolutional neural network-long short-term memory (CNN-LSTM) model that consists of two parts: multi-channel CNN and LSTM to analyze the sentiments of short English messages from Twitter. Un-like a conventional CNN, the proposed model applies a multi-channel strategy that uses several filters of different length to extract active local n-gram features in different scales. This information is then sequentially composed using LSTM. By combining both CNN and LSTM, we can consider both local information within tweets and long-distance dependency across tweets in the classification process. Officially released results show that our system outperforms the baseline algo-rithm.