Heng Yang


2024

pdf bib
Modeling Aspect Sentiment Coherency via Local Sentiment Aggregation
Heng Yang | Ke Li
Findings of the Association for Computational Linguistics: EACL 2024

Aspect sentiment coherency is an intriguing yet underexplored topic in the field of aspect-based sentiment classification. This concept reflects the common pattern where adjacent aspects often share similar sentiments. Despite its prevalence, current studies have not fully recognized the potential of modeling aspect sentiment coherency, including its implications in adversarial defense. To model aspect sentiment coherency, we propose a novel local sentiment aggregation (LSA) paradigm based on constructing a differential-weighted sentiment aggregation window. We have rigorously evaluated our model through experiments, and the results affirm the proficiency of LSA in terms of aspect coherency prediction and aspect sentiment classification. For instance, it outperforms existing models and achieves state-of-the-art sentiment classification performance across five public datasets. Furthermore, we demonstrate the promising ability of LSA in ABSC adversarial defense, thanks to its sentiment coherency modeling. To encourage further exploration and application of this concept, we have made our code publicly accessible. This will provide researchers with a valuable tool to delve into sentiment coherency modeling in future research.

2023

pdf bib
Boosting Text Augmentation via Hybrid Instance Filtering Framework
Heng Yang | Ke Li
Findings of the Association for Computational Linguistics: ACL 2023

Text augmentation is an effective technique for addressing the problem of insufficient data in natural language processing. However, existing text augmentation methods tend to focus on few-shot scenarios and usually perform poorly on large public datasets. Our research indicates that existing augmentation methods often generate instances with shifted feature spaces, which leads to a drop in performance on the augmented data (for example, EDA generally loses approximately 2% in aspect-based sentiment classification). To address this problem, we propose a hybrid instance-filtering framework (BoostAug) based on pre-trained language models that can maintain a similar feature space with natural datasets. BoostAug is transferable to existing text augmentation methods (such as synonym substitution and back translation) and significantly improves the augmentation performance by 2-3% in classification accuracy. Our experimental results on three classification tasks and nine public datasets show that BoostAug addresses the performance drop problem and outperforms state-of-the-art text augmentation methods. Additionally, we release the code to help improve existing augmentation methods on large datasets.

pdf bib
InstOptima: Evolutionary Multi-objective Instruction Optimization via Large Language Model-based Instruction Operators
Heng Yang | Ke Li
Findings of the Association for Computational Linguistics: EMNLP 2023

Instruction-based language modeling has received significant attention in pretrained language models. However, the efficiency of instruction engineering remains low and hinders the development of instruction studies. Recent studies have focused on automating instruction generation, but they primarily aim to improve performance without considering other crucial objectives that impact instruction quality, such as instruction length and perplexity. Therefore, we propose a novel approach (i.e., InstOptima) that treats instruction generation as an evolutionary multi-objective optimization problem. In contrast to text edition-based methods, our approach utilizes a large language model (LLM) to simulate instruction operators, including mutation and crossover. Furthermore, we introduce an objective-guided mechanism for these operators, allowing the LLM to comprehend the objectives and enhance the quality of the generated instructions. Experimental results demonstrate improved fine-tuning performance and the generation of a diverse set of high-quality instructions.
Search
Co-authors
Venues