Jiansong Chen


2023

pdf bib
Ambiguous Learning from Retrieval: Towards Zero-shot Semantic Parsing
Shan Wu | Chunlei Xin | Hongyu Lin | Xianpei Han | Cao Liu | Jiansong Chen | Fan Yang | Guanglu Wan | Le Sun
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Current neural semantic parsers take a supervised approach requiring a considerable amount of training data which is expensive and difficult to obtain. Thus, minimizing the supervision effort is one of the key challenges in semantic parsing. In this paper, we propose the Retrieval as Ambiguous Supervision framework, in which we construct a retrieval system based on pretrained language models to collect high-coverage candidates. Assuming candidates always contain the correct ones, we convert zero-shot task into ambiguously supervised task. To improve the precision and coverage of such ambiguous supervision, we propose a confidence-driven self-training algorithm, in which a semantic parser is learned and exploited to disambiguate the candidates iteratively. Experimental results show that our approach significantly outperforms the state-of-the-art zero-shot semantic parsing methods.

pdf bib
Interpreting Sentiment Composition with Latent Semantic Tree
Zhongtao Jiang | Yuanzhe Zhang | Cao Liu | Jiansong Chen | Jun Zhao | Kang Liu
Findings of the Association for Computational Linguistics: ACL 2023

As the key to sentiment analysis, sentiment composition considers the classification of a constituent via classifications of its contained sub-constituents and rules operated on them. Such compositionality has been widely studied previously in the form of hierarchical trees including untagged and sentiment ones, which are intrinsically suboptimal in our view. To address this, we propose semantic tree, a new tree form capable of interpreting the sentiment composition in a principled way. Semantic tree is a derivation of a context-free grammar (CFG) describing the specific composition rules on difference semantic roles, which is designed carefully following previous linguistic conclusions. However, semantic tree is a latent variable since there is no its annotation in regular datasets. Thus, in our method, it is marginalized out via inside algorithm and learned to optimize the classification performance. Quantitative and qualitative results demonstrate that our method not only achieves better or competitive results compared to baselines in the setting of regular and domain adaptation classification, and also generates plausible tree explanations.

2022

pdf bib
MT-Speech at SemEval-2022 Task 10: Incorporating Data Augmentation and Auxiliary Task with Cross-Lingual Pretrained Language Model for Structured Sentiment Analysis
Cong Chen | Jiansong Chen | Cao Liu | Fan Yang | Guanglu Wan | Jinxiong Xia
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

Sentiment analysis is a fundamental task, and structure sentiment analysis (SSA) is an important component of sentiment analysis. However, traditional SSA is suffering from some important issues: (1) lack of interactive knowledge of different languages; (2) small amount of annotation data or even no annotation data. To address the above problems, we incorporate data augment and auxiliary tasks within a cross-lingual pretrained language model into SSA. Specifically, we employ XLM-Roberta to enhance mutually interactive information when parallel data is available in the pretraining stage. Furthermore, we leverage two data augment strategies and auxiliary tasks to improve the performance on few-label data and zero-shot cross-lingual settings. Experiments demonstrate the effectiveness of our models. Our models rank first on the cross-lingual sub-task and rank second on the monolingual sub-task of SemEval-2022 task 10.

2021

pdf bib
From Paraphrasing to Semantic Parsing: Unsupervised Semantic Parsing via Synchronous Semantic Decoding
Shan Wu | Bo Chen | Chunlei Xin | Xianpei Han | Le Sun | Weipeng Zhang | Jiansong Chen | Fan Yang | Xunliang Cai
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Semantic parsing is challenging due to the structure gap and the semantic gap between utterances and logical forms. In this paper, we propose an unsupervised semantic parsing method - Synchronous Semantic Decoding (SSD), which can simultaneously resolve the semantic gap and the structure gap by jointly leveraging paraphrasing and grammar-constrained decoding. Specifically, we reformulate semantic parsing as a constrained paraphrasing problem: given an utterance, our model synchronously generates its canonical utterancel and meaning representation. During synchronously decoding: the utterance paraphrasing is constrained by the structure of the logical form, therefore the canonical utterance can be paraphrased controlledly; the semantic decoding is guided by the semantics of the canonical utterance, therefore its logical form can be generated unsupervisedly. Experimental results show that SSD is a promising approach and can achieve state-of-the-art unsupervised semantic parsing performance on multiple datasets.

pdf bib
Domain-Lifelong Learning for Dialogue State Tracking via Knowledge Preservation Networks
Qingbin Liu | Pengfei Cao | Cao Liu | Jiansong Chen | Xunliang Cai | Fan Yang | Shizhu He | Kang Liu | Jun Zhao
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Dialogue state tracking (DST), which estimates user goals given a dialogue context, is an essential component of task-oriented dialogue systems. Conventional DST models are usually trained offline, which requires a fixed dataset prepared in advance. This paradigm is often impractical in real-world applications since online dialogue systems usually involve continually emerging new data and domains. Therefore, this paper explores Domain-Lifelong Learning for Dialogue State Tracking (DLL-DST), which aims to continually train a DST model on new data to learn incessantly emerging new domains while avoiding catastrophically forgetting old learned domains. To this end, we propose a novel domain-lifelong learning method, called Knowledge Preservation Networks (KPN), which consists of multi-prototype enhanced retrospection and multi-strategy knowledge distillation, to solve the problems of expression diversity and combinatorial explosion in the DLL-DST task. Experimental results show that KPN effectively alleviates catastrophic forgetting and outperforms previous state-of-the-art lifelong learning methods by 4.25% and 8.27% of whole joint goal accuracy on the MultiWOZ benchmark and the SGD benchmark, respectively.