Jiawei Liu


2024

pdf bib
XFT: Unlocking the Power of Code Instruction Tuning by Simply Merging Upcycled Mixture-of-Experts
Yifeng Ding | Jiawei Liu | Yuxiang Wei | Lingming Zhang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We introduce XFT, a simple yet powerful training scheme, by simply merging upcycled Mixture-of-Experts (MoE) to unleash the performance limit of instruction-tuned code Large Language Models (LLMs). While vanilla sparse upcycling fails to improve instruction tuning, XFT introduces a shared expert mechanism with a novel routing weight normalization strategy into sparse upcycling, which significantly boosts instruction tuning. After fine-tuning the upcycled MoE model, XFT introduces a learnable model merging mechanism to compile the upcycled MoE model back to a dense model, achieving upcycled MoE-level performance with only dense-model compute. By applying XFT to a 1.3B model, we create a new state-of-the-art tiny code LLM with 67.1 and 64.6 pass@1 on HumanEval and HumanEval+ respectively. With the same data and model architecture, XFT improves supervised fine-tuning (SFT) by 13% on HumanEval+, along with consistent improvements from 2% to 13% on MBPP+, MultiPL-E, and DS-1000, demonstrating its generalizability. XFT is fully orthogonal to existing techniques such as Evol-Instruct and OSS-Instruct, opening a new dimension for improving code instruction tuning. Codes are available at https://github.com/ise-uiuc/xft.

pdf bib
From Model-centered to Human-Centered: Revision Distance as a Metric for Text Evaluation in LLMs-based Applications
Yongqiang Ma | Lizhi Qing | Jiawei Liu | Yangyang Kang | Yue Zhang | Wei Lu | Xiaozhong Liu | Qikai Cheng
Findings of the Association for Computational Linguistics: ACL 2024

Evaluating large language models (LLMs) is fundamental, particularly in the context of practical applications. Conventional evaluation methods, typically designed primarily for LLM development, yield numerical scores that ignore the user experience. Therefore, our study shifts the focus from model-centered to human-centered evaluation in the context of AI-powered writing assistance applications. Our proposed metric, termed “Revision Distance,” utilizes LLMs to suggest revision edits that mimic the human writing process. It is determined by counting the revision edits generated by LLMs. Benefiting from the generated revision edit details, our metric can provide a self-explained text evaluation result in a human-understandable manner beyond the context-independent score. Our results show that for the easy-writing task, “Revision Distance” is consistent with established metrics (ROUGE, Bert-score, and GPT-score), but offers more insightful, detailed feedback and better distinguishes between texts. Moreover, in the context of challenging academic writing tasks, our metric still delivers reliable evaluations where other metrics tend to struggle. Furthermore, our metric also holds significant potential for scenarios lacking reference texts.

pdf bib
Enhance Robustness of Language Models against Variation Attack through Graph Integration
Zi Xiong | Lizhi Qing | Yangyang Kang | Jiawei Liu | Hongsong Li | Changlong Sun | Xiaozhong Liu | Wei Lu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The widespread use of pre-trained language models (PLMs) in natural language processing (NLP) has greatly improved performance outcomes. However, these models’ vulnerability to adversarial attacks (e.g., camouflaged hints from drug dealers), particularly in the Chinese language with its rich character diversity/variation and complex structures, hatches vital apprehension. In this study, we propose a novel method, CHinese vAriatioN Graph Enhancement (CHANGE), to increase the robustness of PLMs against character variation attacks in Chinese content. CHANGE presents a novel approach to incorporate a Chinese character variation graph into the PLMs. Through designing different supplementary tasks utilizing the graph structure, CHANGE essentially enhances PLMs’ interpretation of adversarially manipulated text. Experiments conducted in a multitude of NLP tasks show that CHANGE outperforms current language models in combating against adversarial attacks and serves as a valuable contribution to robust language model research. Moreover, these findings highlight the substantial potential of graph-guided pre-training strategies for real-world applications.

2021

pdf bib
A Role-Selected Sharing Network for Joint Machine-Human Chatting Handoff and Service Satisfaction Analysis
Jiawei Liu | Kaisong Song | Yangyang Kang | Guoxiu He | Zhuoren Jiang | Changlong Sun | Wei Lu | Xiaozhong Liu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Chatbot is increasingly thriving in different domains, however, because of unexpected discourse complexity and training data sparseness, its potential distrust hatches vital apprehension. Recently, Machine-Human Chatting Handoff (MHCH), predicting chatbot failure and enabling human-algorithm collaboration to enhance chatbot quality, has attracted increasing attention from industry and academia. In this study, we propose a novel model, Role-Selected Sharing Network (RSSN), which integrates both dialogue satisfaction estimation and handoff prediction in one multi-task learning framework. Unlike prior efforts in dialog mining, by utilizing local user satisfaction as a bridge, global satisfaction detector and handoff predictor can effectively exchange critical information. Specifically, we decouple the relation and interaction between the two tasks by the role information after the shared encoder. Extensive experiments on two public datasets demonstrate the effectiveness of our model.

pdf bib
ECNUICA at SemEval-2021 Task 11: Rule based Information Extraction Pipeline
Jiaju Lin | Jing Ling | Zhiwei Wang | Jiawei Liu | Qin Chen | Liang He
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper presents our endeavor for solving task11, NLPContributionGraph, of SemEval-2021. The purpose of the task was to extract triples from a paper in the Nature Language Processing field for constructing an Open Research Knowledge Graph. The task includes three sub-tasks: detecting the contribution sentences in papers, identifying scientific terms and predicate phrases from the contribution sentences; and inferring triples in the form of (subject, predicate, object) as statements for Knowledge Graph building. In this paper, we apply an ensemble of various fine-tuned pre-trained language models (PLM) for tasks one and two. In addition, self-training methods are adopted for tackling the shortage of annotated data. For the third task, rather than using classic neural open information extraction (OIE) architectures, we generate potential triples via manually designed rules and develop a binary classifier to differentiate positive ones from others. The quantitative results show that we obtain the 4th, 2nd, and 2nd rank in three evaluation phases.

2018

pdf bib
Incorporating Latent Meanings of Morphological Compositions to Enhance Word Embeddings
Yang Xu | Jiawei Liu | Wei Yang | Liusheng Huang
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Traditional word embedding approaches learn semantic information at word level while ignoring the meaningful internal structures of words like morphemes. Furthermore, existing morphology-based models directly incorporate morphemes to train word embeddings, but still neglect the latent meanings of morphemes. In this paper, we explore to employ the latent meanings of morphological compositions of words to train and enhance word embeddings. Based on this purpose, we propose three Latent Meaning Models (LMMs), named LMM-A, LMM-S and LMM-M respectively, which adopt different strategies to incorporate the latent meanings of morphemes during the training process. Experiments on word similarity, syntactic analogy and text classification are conducted to validate the feasibility of our models. The results demonstrate that our models outperform the baselines on five word similarity datasets. On Wordsim-353 and RG-65 datasets, our models nearly achieve 5% and 7% gains over the classic CBOW model, respectively. For the syntactic analogy and text classification tasks, our models also surpass all the baselines including a morphology-based model.

2016

pdf bib
Improve Chinese Word Embeddings by Exploiting Internal Structure
Jian Xu | Jiawei Liu | Liangang Zhang | Zhengyu Li | Huanhuan Chen
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies