Jiayao Zhang
2024
Event Causality Identification with Synthetic Control
Haoyu Wang
|
Fengze Liu
|
Jiayao Zhang
|
Dan Roth
|
Kyle Richardson
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Event causality identification (ECI), a process that extracts causal relations between events from text, is crucial for distinguishing causation from correlation. Traditional approaches to ECI have primarily utilized linguistic patterns and multi-hop relational inference, risking false causality identification due to informal usage of causality and specious graphical inference. In this paper, we adopt the Rubin Causal Model to identify event causality: given two temporally ordered events, we see the first event as the treatment and the second one as the observed outcome. Determining their causality involves manipulating the treatment and estimating the resultant change in the likelihood of the outcome. Given that it is only possible to implement manipulation conceptually in the text domain, as a work-around, we try to find a twin for the protagonist from existing corpora. This twin should have identical life experiences with the protagonist before the treatment but undergoes an intervention of treatment. However, the practical difficulty of locating such a match limits its feasibility. Addressing this issue, we use the synthetic control method to generate such a twin’ from relevant historical data, leveraging text embedding synthesis and inversion techniques. This approach allows us to identify causal relations more robustly than previous methods, including GPT-4, which is demonstrated on a causality benchmark, COPES-hard.
2023
COLA: Contextualized Commonsense Causal Reasoning from the Causal Inference Perspective
Zhaowei Wang
|
Quyet V. Do
|
Hongming Zhang
|
Jiayao Zhang
|
Weiqi Wang
|
Tianqing Fang
|
Yangqiu Song
|
Ginny Wong
|
Simon See
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Detecting commonsense causal relations (causation) between events has long been an essential yet challenging task. Given that events are complicated, an event may have different causes under various contexts. Thus, exploiting context plays an essential role in detecting causal relations. Meanwhile, previous works about commonsense causation only consider two events and ignore their context, simplifying the task formulation. This paper proposes a new task to detect commonsense causation between two events in an event sequence (i.e., context), called contextualized commonsense causal reasoning. We also design a zero-shot framework: COLA (Contextualized Commonsense Causality Reasoner) to solve the task from the causal inference perspective. This framework obtains rich incidental supervision from temporality and balances covariates from multiple timestamps to remove confounding effects. Our extensive experiments show that COLA can detect commonsense causality more accurately than baselines.
Search
Fix data
Co-authors
- Quyet V. Do 1
- Tianqing Fang 1
- Fengze Liu 1
- Kyle Richardson 1
- Dan Roth 1
- show all...