2024
pdf
bib
abs
ViCor: Bridging Visual Understanding and Commonsense Reasoning with Large Language Models
Kaiwen Zhou
|
Kwonjoon Lee
|
Teruhisa Misu
|
Xin Wang
Findings of the Association for Computational Linguistics: ACL 2024
In our work, we explore the synergistic capabilities of pre-trained vision-and-language models (VLMs) and large language models (LLMs) on visual commonsense reasoning (VCR) problems. We find that VLMs and LLMs-based decision pipelines are good at different kinds of VCR problems. Pre-trained VLMs exhibit strong performance for problems involving understanding the literal visual content, which we noted as visual commonsense understanding (VCU). For problems where the goal is to infer conclusions beyond image content, which we noted as visual commonsense inference (VCI), VLMs face difficulties, while LLMs, given sufficient visual evidence, can use commonsense to infer the answer well. We empirically validate this by letting LLMs classify VCR problems into these two categories and show the significant difference between VLM and LLM with image caption decision pipelines on two subproblems. Moreover, we identify a challenge with VLMs’ passive perception, which may miss crucial context information, leading to incorrect reasoning by LLMs. Based on these, we suggest a collaborative approach, named ViCor, where pre-trained LLMs serve as problem classifiers to analyze the problem category, then either use VLMs to answer the question directly or actively instruct VLMs to concentrate on and gather relevant visual elements to support potential commonsense inferences. We evaluate our framework on two VCR benchmark datasets and outperform all other methods without in-domain fine-tuning.
pdf
bib
abs
Navigation as Attackers Wish? Towards Building Robust Embodied Agents under Federated Learning
Yunchao Zhang
|
Zonglin Di
|
Kaiwen Zhou
|
Cihang Xie
|
Xin Wang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Federated embodied agent learning protects the data privacy of individual visual environments by keeping data locally at each client (the individual environment) during training. However, since the local data is inaccessible to the server under federated learning, attackers may easily poison the training data of the local client to build a backdoor in the agent without notice. Deploying such an agent raises the risk of potential harm to humans, as the attackers may easily navigate and control the agent as they wish via the backdoor. Towards Byzantine-robust federated embodied agent learning, in this paper, we study the attack and defense for the task of vision-and-language navigation (VLN), where the agent is required to follow natural language instructions to navigate indoor environments. First, we introduce a simple but effective attack strategy, Navigation as Wish (NAW), in which the malicious client manipulates local trajectory data to implant a backdoor into the global model. Results on two VLN datasets (R2R and RxR) show that NAW can easily navigate the deployed VLN agent regardless of the language instruction, without affecting its performance on normal test sets. Then, we propose a new Prompt-Based Aggregation (PBA) to defend against the NAW attack in federated VLN, which provides the server with a ”prompt” of the vision-and-language alignment variance between the benign and malicious clients so that they can be distinguished during training. We validate the effectiveness of the PBA method on protecting the global model from the NAW attack, which outperforms other state-of-the-art defense methods by a large margin in the defense metrics on R2R and RxR.
pdf
bib
abs
Muffin or Chihuahua? Challenging Multimodal Large Language Models with Multipanel VQA
Yue Fan
|
Jing Gu
|
Kaiwen Zhou
|
Qianqi Yan
|
Shan Jiang
|
Ching-Chen Kuo
|
Yang Zhao
|
Xinze Guan
|
Xin Wang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Multipanel images, commonly seen as web screenshots, posters, etc., pervade our daily lives. These images, characterized by their composition of multiple subfigures in distinct layouts, effectively convey information to people. Toward building advanced multimodal AI applications, such as agents that understand complex scenes and navigate through webpages, the skill of multipanel visual reasoning is essential, and a comprehensive evaluation of models in this regard is important. Therefore, we introduce Multipanel Visual Question Answering (MultipanelVQA), a novel benchmark comprising 6,600 triplets of questions, answers, and multipanel images that specifically challenge models in comprehending multipanel images. Our evaluation shows that questions in the MultipanelVQA benchmark pose significant challenges to the state-of-the-art Multimodal Large Language Models (MLLMs) tested, even though humans can attain approximately 99% accuracy on these questions. Distinctively, the MultipanelVQA benchmark features synthetically generated multipanel images specifically crafted to isolate and assess the impact of various factors, such as the layout, on MLLMs’ multipanel image comprehension abilities. As a result, in addition to benchmarking the capabilities of MLLMs in understanding multipanel images, we analyze various factors of the multipanel image that affect MLLMs’ performance with synthetic data and offer insights for enhancement.