Kangjie Zheng


2024

pdf bib
A Decoding Algorithm for Length-Control Summarization Based on Directed Acyclic Transformers
Chenyang Huang | Hao Zhou | Cameron Jen | Kangjie Zheng | Osmar Zaiane | Lili Mou
Findings of the Association for Computational Linguistics: EMNLP 2024

Length-control summarization aims to condense long texts into a short one within a certain length limit. Previous approaches often use autoregressive (AR) models and treat the length requirement as a soft constraint, which may not always be satisfied. In this study, we propose a novel length-control decoding algorithm based on the directed acyclic Transformer (DAT). Our approach allows for multiple plausible sequence fragments and predicts a path to connect them. In addition, we propose a Sequence Maximum a Posteriori (Seq-MAP) decoding algorithm that marginalizes different possible paths and finds the most probable summary satisfying the length budget. Our algorithm is based on beam search, which further facilitates a reranker for performance improvement. Experimental results on the Gigaword dataset demonstrate our state-of-the-art performance for length-control summarization.

2020

pdf bib
A Predicate-Function-Argument Annotation of Natural Language for Open-Domain Information eXpression
Mingming Sun | Wenyue Hua | Zoey Liu | Xin Wang | Kangjie Zheng | Ping Li
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Existing OIE (Open Information Extraction) algorithms are independent of each other such that there exist lots of redundant works; the featured strategies are not reusable and not adaptive to new tasks. This paper proposes a new pipeline to build OIE systems, where an Open-domain Information eXpression (OIX) task is proposed to provide a platform for all OIE strategies. The OIX is an OIE friendly expression of a sentence without information loss. The generation procedure of OIX contains shared works of OIE algorithms so that OIE strategies can be developed on the platform of OIX as inference operations focusing on more critical problems. Based on the same platform of OIX, the OIE strategies are reusable, and people can select a set of strategies to assemble their algorithm for a specific task so that the adaptability may be significantly increased. This paper focuses on the task of OIX and propose a solution – Open Information Annotation (OIA). OIA is a predicate-function-argument annotation for sentences. We label a data set of sentence-OIA pairs and propose a dependency-based rule system to generate OIA annotations from sentences. The evaluation results reveal that learning the OIA from a sentence is a challenge owing to the complexity of natural language sentences, and it is worthy of attracting more attention from the research community.