Liangchen Luo


2024

pdf bib
Towards an On-device Agent for Text Rewriting
Yun Zhu | Yinxiao Liu | Felix Stahlberg | Shankar Kumar | Yu-Hui Chen | Liangchen Luo | Lei Shu | Renjie Liu | Jindong Chen | Lei Meng
Findings of the Association for Computational Linguistics: NAACL 2024

Large Language Models (LLMs) have demonstrated impressive capabilities for text rewriting. However creating a smaller yet potent language model for text rewriting presents two formidable challenges: costly data collection and absence of emergent capabilities.In this paper we present solutions to address the above challenges.We propose an new instruction tuning method to develop a mo-bile text rewriting model that leverages LLM-generated data and heuristic reinforcement learning, eliminating the need for human data collection. Moreover, to bridge the performance gap from the constraint size, we pro-pose a cascading approach based on the confidence levels which are distilled from the large server model’s critiques. To evaluate the text rewriting tasks for mobile scenarios, we introduce MessageRewriteEval, a human-labeled benchmark that focuses on text rewriting of messages through natural language instructions. Through empirical experiments, we demonstrate that our on-device model surpasses the current state-of-the-art LLMs in text rewriting while maintaining a significantly reduced model size using public benchmark EditEval and our new benchmark. We also demonstrate that our proposed cascading approach improves model performance further.

2018

pdf bib
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
Liangchen Luo | Jingjing Xu | Junyang Lin | Qi Zeng | Xu Sun
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Generating semantically coherent responses is still a major challenge in dialogue generation. Different from conventional text generation tasks, the mapping between inputs and responses in conversations is more complicated, which highly demands the understanding of utterance-level semantic dependency, a relation between the whole meanings of inputs and outputs. To address this problem, we propose an Auto-Encoder Matching (AEM) model to learn such dependency. The model contains two auto-encoders and one mapping module. The auto-encoders learn the semantic representations of inputs and responses, and the mapping module learns to connect the utterance-level representations. Experimental results from automatic and human evaluations demonstrate that our model is capable of generating responses of high coherence and fluency compared to baseline models.