In recent years, with the vast and rapidly increasing amounts of spoken and textual data, Named Entity Recognition (NER) tasks have evolved into three distinct categories, i.e., text-based NER (TNER), Speech NER (SNER) and Multimodal NER (MNER). However, existing approaches typically require designing separate models for each task, overlooking the potential connections between tasks and limiting the versatility of NER methods. To mitigate these limitations, we introduce a new task named Integrated Multimodal NER (IMNER) to break the boundaries between different modal NER tasks, enabling a unified implementation of them. To achieve this, we first design a unified data format for inputs from different modalities. Then, leveraging the pre-trained MMSpeech model as the backbone, we propose an **I**ntegrated **M**ultimod**a**l **Ge**neration Framework (**IMAGE**), formulating the Chinese IMNER task as an entity-aware text generation task. Experimental results demonstrate the feasibility of our proposed IMAGE framework in the IMNER task. Our work in integrated multimodal learning in advancing the performance of NER may set up a new direction for future research in the field. Our source code is available at https://github.com/NingJinzhong/IMAGE4IMNER.
In this paper, we formulate the personalized news headline generation problem whose goal is to output a user-specific title based on both a user’s reading interests and a candidate news body to be exposed to her. To build up a benchmark for this problem, we publicize a large-scale dataset named PENS (PErsonalized News headlineS). The training set is collected from user impressions logs of Microsoft News, and the test set is manually created by hundreds of native speakers to enable a fair testbed for evaluating models in an offline mode. We propose a generic framework as a preparatory solution to our problem. At its heart, user preference is learned by leveraging the user behavioral data, and three kinds of user preference injections are proposed to personalize a text generator and establish personalized headlines. We investigate our dataset by implementing several state-of-the-art user modeling methods in our framework to demonstrate a benchmark score for the proposed dataset. The dataset is available at https://msnews.github.io/pens.html.
The pivot for the unified Aspect-based Sentiment Analysis (ABSA) is to couple aspect terms with their corresponding opinion terms, which might further derive easier sentiment predictions. In this paper, we investigate the unified ABSA task from the perspective of Machine Reading Comprehension (MRC) by observing that the aspect and the opinion terms can serve as the query and answer in MRC interchangeably. We propose a new paradigm named Role Flipped Machine Reading Comprehension (RF-MRC) to resolve. At its heart, the predicted results of either the Aspect Term Extraction (ATE) or the Opinion Terms Extraction (OTE) are regarded as the queries, respectively, and the matched opinion or aspect terms are considered as answers. The queries and answers can be flipped for multi-hop detection. Finally, every matched aspect-opinion pair is predicted by the sentiment classifier. RF-MRC can solve the ABSA task without any additional data annotation or transformation. Experiments on three widely used benchmarks and a challenging dataset demonstrate the superiority of the proposed framework.
Multi-source neural machine translation aims to translate from parallel sources of information (e.g. languages, images, etc.) to a single target language, which has shown better performance than most one-to-one systems. Despite the remarkable success of existing models, they usually neglect the fact that multiple source inputs may have inconsistencies. Such differences might bring noise to the task and limit the performance of existing multi-source NMT approaches due to their indiscriminate usage of input sources for target word predictions. In this paper, we attempt to leverage the potential complementary information among distinct sources and alleviate the occasional conflicts of them. To accomplish that, we propose a source invariance network to learn the invariant information of parallel sources. Such network can be easily integrated with multi-encoder based multi-source NMT methods (e.g. multi-encoder RNN and transformer) to enhance the translation results. Extensive experiments on two multi-source translation tasks demonstrate that the proposed approach not only achieves clear gains in translation quality but also captures implicit invariance between different sources.
In this work, we re-examine the problem of extractive text summarization for long documents. We observe that the process of extracting summarization of human can be divided into two stages: 1) a rough reading stage to look for sketched information, and 2) a subsequent careful reading stage to select key sentences to form the summary. By simulating such a two-stage process, we propose a novel approach for extractive summarization. We formulate the problem as a contextual-bandit problem and solve it with policy gradient. We adopt a convolutional neural network to encode gist of paragraphs for rough reading, and a decision making policy with an adapted termination mechanism for careful reading. Experiments on the CNN and DailyMail datasets show that our proposed method can provide high-quality summaries with varied length, and significantly outperform the state-of-the-art extractive methods in terms of ROUGE metrics.