Nailia Mirzakhmedova


2024

pdf bib
The Touché23-ValueEval Dataset for Identifying Human Values behind Arguments
Nailia Mirzakhmedova | Johannes Kiesel | Milad Alshomary | Maximilian Heinrich | Nicolas Handke | Xiaoni Cai | Valentin Barriere | Doratossadat Dastgheib | Omid Ghahroodi | MohammadAli SadraeiJavaheri | Ehsaneddin Asgari | Lea Kawaletz | Henning Wachsmuth | Benno Stein
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

While human values play a crucial role in making arguments persuasive, we currently lack the necessary extensive datasets to develop methods for analyzing the values underlying these arguments on a large scale. To address this gap, we present the Touché23-ValueEval dataset, an expansion of the Webis-ArgValues-22 dataset. We collected and annotated an additional 4780 new arguments, doubling the dataset’s size to 9324 arguments. These arguments were sourced from six diverse sources, covering religious texts, community discussions, free-text arguments, newspaper editorials, and political debates. Each argument is annotated by three crowdworkers for 54 human values, following the methodology established in the original dataset. The Touché23-ValueEval dataset was utilized in the SemEval 2023 Task 4. ValueEval: Identification of Human Values behind Arguments, where an ensemble of transformer models demonstrated state-of-the-art performance. Furthermore, our experiments show that a fine-tuned large language model, Llama-2-7B, achieves comparable results.

2023

pdf bib
SemEval-2023 Task 4: ValueEval: Identification of Human Values Behind Arguments
Johannes Kiesel | Milad Alshomary | Nailia Mirzakhmedova | Maximilian Heinrich | Nicolas Handke | Henning Wachsmuth | Benno Stein
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

Argumentation is ubiquitous in natural language communication, from politics and media to everyday work and private life. Many arguments derive their persuasive power from human values, such as self-directed thought or tolerance, albeit often implicitly. These values are key to understanding the semantics of arguments, as they are generally accepted as justifications for why a particular option is ethically desirable. Can automated systems uncover the values on which an argument draws? To answer this question, 39 teams submitted runs to ValueEval’23. Using a multi-sourced dataset of over 9K arguments, the systems achieved F1-scores up to 0.87 (nature) and over 0.70 for three more of 20 universal value categories. However, many challenges remain, as evidenced by the low peak F1-score of 0.39 for stimulation, hedonism, face, and humility.

pdf bib
Unveiling the Power of Argument Arrangement in Online Persuasive Discussions
Nailia Mirzakhmedova | Johannes Kiesel | Khalid Al-Khatib | Benno Stein
Findings of the Association for Computational Linguistics: EMNLP 2023

Previous research on argumentation in online discussions has largely focused on examining individual comments and neglected the interactive nature of discussions. In line with previous work, we represent individual comments as sequences of semantic argumentative unit types. However, because it is intuitively necessary for dialogical argumentation to address the opposing viewpoints, we extend this model by clustering type sequences into different argument arrangement patterns and representing discussions as sequences of these patterns. These sequences of patterns are a symbolic representation of argumentation strategies that capture the overall structure of discussions. Using this novel approach, we conduct an in-depth analysis of the strategies in 34,393 discussions from the online discussion forum Change My View and show that our discussion model is effective for persuasiveness prediction, outperforming LLM-based classifiers on the same data. Our results provide valuable insights into argumentation dynamics in online discussions and, through the presented prediction procedure, are of practical importance for writing assistance and persuasive text generation systems.