Nan Hua


2024

pdf bib
LMDX: Language Model-based Document Information Extraction and Localization
Vincent Perot | Kai Kang | Florian Luisier | Guolong Su | Xiaoyu Sun | Ramya Sree Boppana | Zilong Wang | Zifeng Wang | Jiaqi Mu | Hao Zhang | Chen-Yu Lee | Nan Hua
Findings of the Association for Computational Linguistics: ACL 2024

Large Language Models (LLM) have revolutionized Natural Language Processing (NLP), improving state-of-the-art and exhibiting emergent capabilities across various tasks. However, their application in extracting information from visually rich documents, which is at the core of many document processing workflows and involving the extraction of key entities from semi-structured documents, has not yet been successful. The main obstacles to adopting LLMs for this task include the absence of layout encoding within LLMs, which is critical for high quality extraction, and the lack of a grounding mechanism to localize the predicted entities within the document. In this paper, we introduce Language Model-based Document Information EXtraction and Localization (LMDX), a methodology to reframe the document information extraction task for a LLM. LMDX enables extraction of singular, repeated, and hierarchical entities, both with and without training data, while providing grounding guarantees and localizing the entities within the document. Finally, we apply LMDX to the PaLM 2-S and Gemini Pro LLMs and evaluate it on VRDU and CORD benchmarks, setting a new state-of-the-art and showing how LMDX enables the creation of high quality, data-efficient parsers.

2023

pdf bib
FormNetV2: Multimodal Graph Contrastive Learning for Form Document Information Extraction
Chen-Yu Lee | Chun-Liang Li | Hao Zhang | Timothy Dozat | Vincent Perot | Guolong Su | Xiang Zhang | Kihyuk Sohn | Nikolay Glushnev | Renshen Wang | Joshua Ainslie | Shangbang Long | Siyang Qin | Yasuhisa Fujii | Nan Hua | Tomas Pfister
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The recent advent of self-supervised pre-training techniques has led to a surge in the use of multimodal learning in form document understanding. However, existing approaches that extend the mask language modeling to other modalities require careful multi-task tuning, complex reconstruction target designs, or additional pre-training data. In FormNetV2, we introduce a centralized multimodal graph contrastive learning strategy to unify self-supervised pre-training for all modalities in one loss. The graph contrastive objective maximizes the agreement of multimodal representations, providing a natural interplay for all modalities without special customization. In addition, we extract image features within the bounding box that joins a pair of tokens connected by a graph edge, capturing more targeted visual cues without loading a sophisticated and separately pre-trained image embedder. FormNetV2 establishes new state-of-the-art performance on FUNSD, CORD, SROIE and Payment benchmarks with a more compact model size.

2022

pdf bib
FormNet: Structural Encoding beyond Sequential Modeling in Form Document Information Extraction
Chen-Yu Lee | Chun-Liang Li | Timothy Dozat | Vincent Perot | Guolong Su | Nan Hua | Joshua Ainslie | Renshen Wang | Yasuhisa Fujii | Tomas Pfister
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Sequence modeling has demonstrated state-of-the-art performance on natural language and document understanding tasks. However, it is challenging to correctly serialize tokens in form-like documents in practice due to their variety of layout patterns. We propose FormNet, a structure-aware sequence model to mitigate the suboptimal serialization of forms. First, we design Rich Attention that leverages the spatial relationship between tokens in a form for more precise attention score calculation. Second, we construct Super-Tokens for each word by embedding representations from their neighboring tokens through graph convolutions. FormNet therefore explicitly recovers local syntactic information that may have been lost during serialization. In experiments, FormNet outperforms existing methods with a more compact model size and less pre-training data, establishing new state-of-the-art performance on CORD, FUNSD and Payment benchmarks.

2020

pdf bib
Pruning Redundant Mappings in Transformer Models via Spectral-Normalized Identity Prior
Zi Lin | Jeremiah Liu | Zi Yang | Nan Hua | Dan Roth
Findings of the Association for Computational Linguistics: EMNLP 2020

Traditional (unstructured) pruning methods for a Transformer model focus on regularizing the individual weights by penalizing them toward zero. In this work, we explore spectral-normalized identity priors (SNIP), a structured pruning approach which penalizes an entire residual module in a Transformer model toward an identity mapping. Our method identifies and discards unimportant non-linear mappings in the residual connections by applying a thresholding operator on the function norm, and is applicable to any structured module including a single attention head, an entire attention blocks, or a feed-forward subnetwork. Furthermore, we introduce spectral normalization to stabilize the distribution of the post-activation values of the Transformer layers, further improving the pruning effectiveness of the proposed methodology. We conduct experiments with BERT on 5 GLUE benchmark tasks to demonstrate that SNIP achieves effective pruning results while maintaining comparable performance. Specifically, we improve the performance over the state-of-the-art by 0.5 to 1.0% on average at 50% compression ratio.

2018

pdf bib
Universal Sentence Encoder for English
Daniel Cer | Yinfei Yang | Sheng-yi Kong | Nan Hua | Nicole Limtiaco | Rhomni St. John | Noah Constant | Mario Guajardo-Cespedes | Steve Yuan | Chris Tar | Brian Strope | Ray Kurzweil
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

We present easy-to-use TensorFlow Hub sentence embedding models having good task transfer performance. Model variants allow for trade-offs between accuracy and compute resources. We report the relationship between model complexity, resources, and transfer performance. Comparisons are made with baselines without transfer learning and to baselines that incorporate word-level transfer. Transfer learning using sentence-level embeddings is shown to outperform models without transfer learning and often those that use only word-level transfer. We show good transfer task performance with minimal training data and obtain encouraging results on word embedding association tests (WEAT) of model bias.