Ona De Gibert

Also published as: Ona de Gibert


2024

pdf bib
Findings of the AmericasNLP 2024 Shared Task on Machine Translation into Indigenous Languages
Abteen Ebrahimi | Ona de Gibert | Raul Vazquez | Rolando Coto-Solano | Pavel Denisov | Robert Pugh | Manuel Mager | Arturo Oncevay | Luis Chiruzzo | Katharina von der Wense | Shruti Rijhwani
Proceedings of the 4th Workshop on Natural Language Processing for Indigenous Languages of the Americas (AmericasNLP 2024)

This paper presents the findings of the third iteration of the AmericasNLP Shared Task on Machine Translation. This year’s competition features eleven Indigenous languages found across North, Central, and South America. A total of six teams participate with a total of 157 submissions across all languages and models. Two baselines – the Sheffield and Helsinki systems from 2023 – are provided and represent hard-to-beat starting points for the competition. In addition to the baselines, teams are given access to a new repository of training data which consists of data collected by teams in prior shared tasks. Using ChrF++ as the main competition metric, we see improvements over the baseline for 4 languages: Chatino, Guarani, Quechua, and Rarámuri, with performance increases over the best baseline of 4.2 ChrF++. In this work, we present a summary of the submitted systems, results, and a human evaluation of system outputs for Bribri, which consists of both (1) a rating of meaning and fluency and (2) a qualitative error analysis of outputs from the best submitted system.

pdf bib
MAMMOTH: Massively Multilingual Modular Open Translation @ Helsinki
Timothee Mickus | Stig-Arne Grönroos | Joseph Attieh | Michele Boggia | Ona De Gibert | Shaoxiong Ji | Niki Andreas Loppi | Alessandro Raganato | Raúl Vázquez | Jörg Tiedemann
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations

NLP in the age of monolithic large language models is approaching its limits in terms of size and information that can be handled. The trend goes to modularization, a necessary step into the direction of designing smaller sub-networks and components with specialized functionality. In this paper, we present the MAMMOTH toolkit: a framework designed for training massively multilingual modular machine translation systems at scale, initially derived from OpenNMT-py and then adapted to ensure efficient training across computation clusters.We showcase its efficiency across clusters of A100 and V100 NVIDIA GPUs, and discuss our design philosophy and plans for future information.The toolkit is publicly available online at https://github.com/Helsinki-NLP/mammoth.

pdf bib
Hybrid Distillation from RBMT and NMT: Helsinki-NLP’s Submission to the Shared Task on Translation into Low-Resource Languages of Spain
Ona De Gibert | Mikko Aulamo | Yves Scherrer | Jörg Tiedemann
Proceedings of the Ninth Conference on Machine Translation

The Helsinki-NLP team participated in the 2024 Shared Task on Translation into Low-Resource languages of Spain with four multilingual systems covering all language pairs. The task consists in developing Machine Translation (MT) models to translate from Spanish into Aragonese, Aranese and Asturian. Our models leverage known approaches for multilingual MT, namely, data filtering, fine-tuning, data tagging, and distillation. We use distillation to merge the knowledge from neural and rule-based systems and explore the trade-offs between translation quality and computational efficiency. We demonstrate that our distilled models can achieve competitive results while significantly reducing computational costs. Our best models ranked 4th, 5th, and 2nd in the open submission track for Spanish–Aragonese, Spanish–Aranese, and Spanish–Asturian, respectively. We release our code and data publicly at https://github.com/Helsinki-NLP/lowres-spain-st.

pdf bib
A New Massive Multilingual Dataset for High-Performance Language Technologies
Ona de Gibert | Graeme Nail | Nikolay Arefyev | Marta Bañón | Jelmer van der Linde | Shaoxiong Ji | Jaume Zaragoza-Bernabeu | Mikko Aulamo | Gema Ramírez-Sánchez | Andrey Kutuzov | Sampo Pyysalo | Stephan Oepen | Jörg Tiedemann
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

We present the HPLT (High Performance Language Technologies) language resources, a new massive multilingual dataset including both monolingual and bilingual corpora extracted from CommonCrawl and previously unused web crawls from the Internet Archive. We describe our methods for data acquisition, management and processing of large corpora, which rely on open-source software tools and high-performance computing. Our monolingual collection focuses on low- to medium-resourced languages and covers 75 languages and a total of ≈ 5.6 trillion word tokens de-duplicated on the document level. Our English-centric parallel corpus is derived from its monolingual counterpart and covers 18 language pairs and more than 96 million aligned sentence pairs with roughly 1.4 billion English tokens. The HPLT language resources are one of the largest open text corpora ever released, providing a great resource for language modeling and machine translation training. We publicly release the corpora, the software, and the tools used in this work.

2023

pdf bib
The OPUS-MT Dashboard – A Toolkit for a Systematic Evaluation of Open Machine Translation Models
Jörg Tiedemann | Ona de Gibert
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

The OPUS-MT dashboard is a web-based platform that provides a comprehensive overview of open translation models. We focus on a systematic collection of benchmark results with verifiable translation performance and large coverage in terms of languages and domains. We provide results for in-house OPUS-MT and Tatoeba models as well as external models from the Huggingface repository and user-contributed translations. The functionalities of the evaluation tool include summaries of benchmarks for over 2,300 models covering 4,560 language directions and 294 languages, as well as the inspection of predicted translations against their human reference. We focus on centralization, reproducibility and coverage of MT evaluation combined with scalability. The dashboard can be accessed live at https://opus.nlpl.eu/dashboard/.

pdf bib
Unsupervised Feature Selection for Effective Parallel Corpus Filtering
Mikko Aulamo | Ona de Gibert | Sami Virpioja | Jörg Tiedemann
Proceedings of the 24th Annual Conference of the European Association for Machine Translation

This work presents an unsupervised method of selecting filters and threshold values for the OpusFilter parallel corpus cleaning toolbox. The method clusters sentence pairs into noisy and clean categories and uses the features of the noisy cluster center as filtering parameters. Our approach utilizes feature importance analysis to disregard filters that do not differentiate between clean and noisy data. A randomly sampled subset of a given corpus is used for filter selection and ineffective filters are not run for the full corpus. We use a set of automatic evaluation metrics to assess the quality of translation models trained with data filtered by our method and data filtered with OpusFilter’s default parameters. The trained models cover English-German and English-Ukrainian in both directions. The proposed method outperforms the default parameters in all translation directions for almost all evaluation metrics.

pdf bib
Four Approaches to Low-Resource Multilingual NMT: The Helsinki Submission to the AmericasNLP 2023 Shared Task
Ona De Gibert | Raúl Vázquez | Mikko Aulamo | Yves Scherrer | Sami Virpioja | Jörg Tiedemann
Proceedings of the Workshop on Natural Language Processing for Indigenous Languages of the Americas (AmericasNLP)

The Helsinki-NLP team participated in the AmericasNLP 2023 Shared Task with 6 submissions for all 11 language pairs arising from 4 different multilingual systems. We provide a detailed look at the work that went into collecting and preprocessing the data that led to our submissions. We explore various setups for multilingual Neural Machine Translation (NMT), namely knowledge distillation and transfer learning, multilingual NMT including a high-resource language (English), language-specific fine-tuning, and multilingual NMT exclusively using low-resource data. Our multilingual Model B ranks first in 4 out of the 11 language pairs.

2018

pdf bib
Hate Speech Dataset from a White Supremacy Forum
Ona de Gibert | Naiara Perez | Aitor García-Pablos | Montse Cuadros
Proceedings of the 2nd Workshop on Abusive Language Online (ALW2)

Hate speech is commonly defined as any communication that disparages a target group of people based on some characteristic such as race, colour, ethnicity, gender, sexual orientation, nationality, religion, or other characteristic. Due to the massive rise of user-generated web content on social media, the amount of hate speech is also steadily increasing. Over the past years, interest in online hate speech detection and, particularly, the automation of this task has continuously grown, along with the societal impact of the phenomenon. This paper describes a hate speech dataset composed of thousands of sentences manually labelled as containing hate speech or not. The sentences have been extracted from Stormfront, a white supremacist forum. A custom annotation tool has been developed to carry out the manual labelling task which, among other things, allows the annotators to choose whether to read the context of a sentence before labelling it. The paper also provides a thoughtful qualitative and quantitative study of the resulting dataset and several baseline experiments with different classification models. The dataset is publicly available.