2024
pdf
bib
abs
M4GT-Bench: Evaluation Benchmark for Black-Box Machine-Generated Text Detection
Yuxia Wang
|
Jonibek Mansurov
|
Petar Ivanov
|
Jinyan Su
|
Artem Shelmanov
|
Akim Tsvigun
|
Osama Mohammed Afzal
|
Tarek Mahmoud
|
Giovanni Puccetti
|
Thomas Arnold
|
Alham Aji
|
Nizar Habash
|
Iryna Gurevych
|
Preslav Nakov
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The advent of Large Language Models (LLMs) has brought an unprecedented surge in machine-generated text (MGT) across diverse channels. This raises legitimate concerns about its potential misuse and societal implications. The need to identify and differentiate such content from genuine human-generated text is critical in combating disinformation, preserving the integrity of education and scientific fields, and maintaining trust in communication. In this work, we address this problem by introducing a new benchmark based on a multilingual, multi-domain and multi-generator corpus of MGTs — M4GT-Bench. The benchmark is compiled of three tasks: (1) mono-lingual and multi-lingual binary MGT detection; (2) multi-way detection where one need to identify, which particular model generated the text; and (3) mixed human-machine text detection, where a word boundary delimiting MGT from human-written content should be determined. On the developed benchmark, we have tested several MGT detection baselines and also conducted an evaluation of human performance. We see that obtaining good performance in MGT detection usually requires an access to the training data from the same domain and generators. The benchmark is available at https://github.com/mbzuai-nlp/M4GT-Bench.
pdf
bib
abs
M4: Multi-generator, Multi-domain, and Multi-lingual Black-Box Machine-Generated Text Detection
Yuxia Wang
|
Jonibek Mansurov
|
Petar Ivanov
|
Jinyan Su
|
Artem Shelmanov
|
Akim Tsvigun
|
Chenxi Whitehouse
|
Osama Mohammed Afzal
|
Tarek Mahmoud
|
Toru Sasaki
|
Thomas Arnold
|
Alham Fikri Aji
|
Nizar Habash
|
Iryna Gurevych
|
Preslav Nakov
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)
Large language models (LLMs) have demonstrated remarkable capability to generate fluent responses to a wide variety of user queries. However, this has also raised concerns about the potential misuse of such texts in journalism, education, and academia. In this study, we strive to create automated systems that can detect machine-generated texts and pinpoint potential misuse. We first introduce a large-scale benchmark M4, which is a multi-generator, multi-domain, and multi-lingual corpus for machine-generated text detection. Through an extensive empirical study of this dataset, we show that it is challenging for detectors to generalize well on instances from unseen domains or LLMs. In such cases, detectors tend to misclassify machine-generated text as human-written. These results show that the problem is far from solved and that there is a lot of room for improvement. We believe that our dataset will enable future research towards more robust approaches to this pressing societal problem. The dataset is available at https://github.com/mbzuai-nlp/M4
pdf
bib
abs
FRAPPE: FRAming, Persuasion, and Propaganda Explorer
Ahmed Sajwani
|
Alaa El Setohy
|
Ali Mekky
|
Diana Turmakhan
|
Lara Hassan
|
Mohamed El Zeftawy
|
Omar El Herraoui
|
Osama Mohammed Afzal
|
Qisheng Liao
|
Tarek Mahmoud
|
Zain Muhammad Mujahid
|
Muhammad Umar Salman
|
Muhammad Arslan Manzoor
|
Massa Baali
|
Jakub Piskorski
|
Nicolas Stefanovitch
|
Giovanni Da San Martino
|
Preslav Nakov
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations
The abundance of news sources and the urgent demand for reliable information have led to serious concerns about the threat of misleading information. In this paper, we present FRAPPE, a FRAming, Persuasion, and Propaganda Explorer system. FRAPPE goes beyond conventional news analysis of articles and unveils the intricate linguistic techniques used to shape readers’ opinions and emotions. Our system allows users not only to analyze individual articles for their genre, framings, and use of persuasion techniques, but also to draw comparisons between the strategies of persuasion and framing adopted by a diverse pool of news outlets and countries across multiple languages for different topics, thus providing a comprehensive understanding of how information is presented and manipulated. FRAPPE is publicly accessible at https://frappe.streamlit.app/ and a video explaining our system is available at https://www.youtube.com/watch?v=3RlTfSVnZmk
pdf
bib
abs
LLM-DetectAIve: a Tool for Fine-Grained Machine-Generated Text Detection
Mervat Abassy
|
Kareem Elozeiri
|
Alexander Aziz
|
Minh Ngoc Ta
|
Raj Vardhan Tomar
|
Bimarsha Adhikari
|
Saad El Dine Ahmed
|
Yuxia Wang
|
Osama Mohammed Afzal
|
Zhuohan Xie
|
Jonibek Mansurov
|
Ekaterina Artemova
|
Vladislav Mikhailov
|
Rui Xing
|
Jiahui Geng
|
Hasan Iqbal
|
Zain Muhammad Mujahid
|
Tarek Mahmoud
|
Akim Tsvigun
|
Alham Fikri Aji
|
Artem Shelmanov
|
Nizar Habash
|
Iryna Gurevych
|
Preslav Nakov
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
The ease of access to large language models (LLMs) has enabled a widespread of machine-generated texts, and now it is often hard to tell whether a piece of text was human-written or machine-generated. This raises concerns about potential misuse, particularly within educational and academic domains. Thus, it is important to develop practical systems that can automate the process. Here, we present one such system, LLM-DetectAIve, designed for fine-grained detection. Unlike most previous work on machine-generated text detection, which focused on binary classification, LLM-DetectAIve supports four categories: (i) human-written, (ii) machine-generated, (iii) machine-written, then machine-humanized, and (iv) human-written, then machine-polished. Category (iii) aims to detect attempts to obfuscate the fact that a text was machine-generated, while category (iv) looks for cases where the LLM was used to polish a human-written text, which is typically acceptable in academic writing, but not in education. Our experiments show that LLM-DetectAIve can effectively identify the above four categories, which makes it a potentially useful tool in education, academia, and other domains.LLM-DetectAIve is publicly accessible at https://github.com/mbzuai-nlp/LLM-DetectAIve. The video describing our system is available at https://youtu.be/E8eT_bE7k8c.
pdf
bib
abs
Factcheck-Bench: Fine-Grained Evaluation Benchmark for Automatic Fact-checkers
Yuxia Wang
|
Revanth Gangi Reddy
|
Zain Muhammad Mujahid
|
Arnav Arora
|
Aleksandr Rubashevskii
|
Jiahui Geng
|
Osama Mohammed Afzal
|
Liangming Pan
|
Nadav Borenstein
|
Aditya Pillai
|
Isabelle Augenstein
|
Iryna Gurevych
|
Preslav Nakov
Findings of the Association for Computational Linguistics: EMNLP 2024
The increased use of large language models (LLMs) across a variety of real-world applications calls for mechanisms to verify the factual accuracy of their outputs. In this work, we present Factcheck-Bench, a holistic end-to-end framework for annotating and evaluating the factuality of LLM-generated responses, which encompasses a multi-stage annotation scheme designed to yield detailed labels for fact-checking and correcting not just the final prediction, but also the intermediate steps that a fact-checking system might need to take. Based on this framework, we construct an open-domain factuality benchmark in three-levels of granularity: claim, sentence, and document. We further propose a system, Factcheck-GPT, which follows our framework, and we show that it outperforms several popular LLM fact-checkers. We make our annotation tool, annotated data, benchmark, and code available at https://github.com/yuxiaw/Factcheck-GPT.
pdf
bib
abs
SemEval-2024 Task 8: Multidomain, Multimodel and Multilingual Machine-Generated Text Detection
Yuxia Wang
|
Jonibek Mansurov
|
Petar Ivanov
|
Jinyan Su
|
Artem Shelmanov
|
Akim Tsvigun
|
Osama Mohammed Afzal
|
Tarek Mahmoud
|
Giovanni Puccetti
|
Thomas Arnold
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
We present the results and the main findings of SemEval-2024 Task 8: Multigenerator, Multidomain, and Multilingual Machine-Generated Text Detection. The task featured three subtasks. Subtask A is a binary classification task determining whether a text is written by a human or generated by a machine. This subtask has two tracks: a monolingual track focused solely on English texts and a multilingual track. Subtask B is to detect the exact source of a text, discerning whether it is written by a human or generated by a specific LLM. Subtask C aims to identify the changing point within a text, at which the authorship transitions from human to machine. The task attracted a large number of participants: subtask A monolingual (126), subtask A multilingual (59), subtask B (70), and subtask C (30). In this paper, we present the task, analyze the results, and discuss the system submissions and the methods they used. For all subtasks, the best systems used LLMs.
2023
pdf
bib
abs
Team TheSyllogist at SemEval-2023 Task 3: Language-Agnostic Framing Detection in Multi-Lingual Online News: A Zero-Shot Transfer Approach
Osama Mohammed Afzal
|
Preslav Nakov
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
We describe our system for SemEval-2022 Task 3 subtask 2 which on detecting the frames used in a news article in a multi-lingual setup. We propose a multi-lingual approach based on machine translation of the input, followed by an English prediction model. Our system demonstrated good zero-shot transfer capability, achieving micro-F1 scores of 53% for Greek (4th on the leaderboard) and 56.1% for Georgian (3rd on the leaderboard), without any prior training on translated data for these languages. Moreover, our system achieved comparable performance on seven other languages, including German, English, French, Russian, Italian, Polish, and Spanish. Our results demonstrate the feasibility of creating a language-agnostic model for automatic framing detection in online news.