Text-based reinforcement learning agents have predominantly been neural network-based models with embeddings-based representation, learning uninterpretable policies that often do not generalize well to unseen games. On the other hand, neuro-symbolic methods, specifically those that leverage an intermediate formal representation, are gaining significant attention in language understanding tasks. This is because of their advantages ranging from inherent interpretability, the lesser requirement of training data, and being generalizable in scenarios with unseen data. Therefore, in this paper, we propose a modular, NEuro-Symbolic Textual Agent (NESTA) that combines a generic semantic parser with a rule induction system to learn abstract interpretable rules as policies. Our experiments on established text-based game benchmarks show that the proposed NESTA method outperforms deep reinforcement learning-based techniques by achieving better generalization to unseen test games and learning from fewer training interactions.
Human-annotated labels and explanations are critical for training explainable NLP models. However, unlike human-annotated labels whose quality is easier to calibrate (e.g., with a majority vote), human-crafted free-form explanations can be quite subjective. Before blindly using them as ground truth to train ML models, a vital question needs to be asked: How do we evaluate a human-annotated explanation’s quality? In this paper, we build on the view that the quality of a human-annotated explanation can be measured based on its helpfulness (or impairment) to the ML models’ performance for the desired NLP tasks for which the annotations were collected. In comparison to the commonly used Simulatability score, we define a new metric that can take into consideration the helpfulness of an explanation for model performance at both fine-tuning and inference. With the help of a unified dataset format, we evaluated the proposed metric on five datasets (e.g., e-SNLI) against two model architectures (T5 and BART), and the results show that our proposed metric can objectively evaluate the quality of human-annotated explanations, while Simulatability falls short.
Entity linking (EL) on short text is crucial for a variety of industrial applications. Compared with general long-text EL, short-text EL poses particular challenges as the limited context restricts the clues one can leverage to disambiguate textual mentions. On the other hand, existing studies mostly focus on black-box neural methods and thus lack interpretability, which is critical to industrial applications in certain areas. In this study, we extend upon LNN-EL, a monolingual short-text EL method based on interpretable first-order logic, by incorporating three sets of multilingual features to enable disambiguating mentions written in languages other than English. More specifically, we use multilingual autoencoding language models (i.e., mBERT) to capture the similarities between the mention with its context and the candidate entity; we use multilingual sequence-to-sequence language models (i.e., mBART and mT5) to represent the likelihood of the text given the candidate entity. We also propose a word-level context feature to capture the semantic evidence of the co-occurring mentions. We evaluate the proposed xLNN-EL approach on the QALD-9-multilingual dataset and demonstrate the cross-linguality of the model and the effectiveness of the features.
Knowledge base completion (KBC) has benefitted greatly by learning explainable rules in an human-interpretable dialect such as first-order logic. Rule-based KBC has so far, mainly focussed on learning one of two types of rules: conjunction-of-disjunctions and disjunction-of-conjunctions. We qualitatively show, via examples, that one of these has an advantage over the other when it comes to achieving high quality KBC. To the best of our knowledge, we are the first to propose learning both kinds of rules within a common framework. To this end, we propose to utilize logical neural networks (LNN), a powerful neuro-symbolic AI framework that can express both kinds of rules and learn these end-to-end using gradient-based optimization. Our in-depth experiments show that our LNN-based approach to learning rules for KBC leads to roughly 10% relative improvements, if not more, over SotA rule-based KBC methods. Moreover, by showing how to combine our proposed methods with knowledge graph embeddings we further achieve an additional 7.5% relative improvement.
Entity linking (EL) is the task of disambiguating mentions appearing in text by linking them to entities in a knowledge graph, a crucial task for text understanding, question answering or conversational systems. In the special case of short-text EL, which poses additional challenges due to limited context, prior approaches have reached good performance by employing heuristics-based methods or purely neural approaches. Here, we take a different, neuro-symbolic approach that combines the advantages of using interpretable rules based on first-order logic with the performance of neural learning. Even though constrained to use rules, we show that we reach competitive or better performance with SoTA black-box neural approaches. Furthermore, our framework has the benefits of extensibility and transferability. We show that we can easily blend existing rule templates given by a human expert, with multiple types of features (priors, BERT encodings, box embeddings, etc), and even with scores resulting from previous EL methods, thus improving on such methods. As an example of improvement, on the LC-QuAD-1.0 dataset, we show more than 3% increase in F1 score relative to previous SoTA. Finally, we show that the inductive bias offered by using logic results in a set of learned rules that transfers from one dataset to another, sometimes without finetuning, while still having high accuracy.
Text-Based Games (TBGs) have emerged as important testbeds for reinforcement learning (RL) in the natural language domain. Previous methods using LSTM-based action policies are uninterpretable and often overfit the training games showing poor performance to unseen test games. We present SymboLic Action policy for Textual Environments (SLATE), that learns interpretable action policy rules from symbolic abstractions of textual observations for improved generalization. We outline a method for end-to-end differentiable symbolic rule learning and show that such symbolic policies outperform previous state-of-the-art methods in text-based RL for the coin collector environment from 5-10x fewer training games. Additionally, our method provides human-understandable policy rules that can be readily verified for their logical consistency and can be easily debugged.
Cross-lingual text classification (CLTC) is a challenging task made even harder still due to the lack of labeled data in low-resource languages. In this paper, we propose zero-shot instance-weighting, a general model-agnostic zero-shot learning framework for improving CLTC by leveraging source instance weighting. It adds a module on top of pre-trained language models for similarity computation of instance weights, thus aligning each source instance to the target language. During training, the framework utilizes gradient descent that is weighted by instance weights to update parameters. We evaluate this framework over seven target languages on three fundamental tasks and show its effectiveness and extensibility, by improving on F1 score up to 4% in single-source transfer and 8% in multi-source transfer. To the best of our knowledge, our method is the first to apply instance weighting in zero-shot CLTC. It is simple yet effective and easily extensible into multi-source transfer.
Recent years have seen important advances in the quality of state-of-the-art models, but this has come at the expense of models becoming less interpretable. This survey presents an overview of the current state of Explainable AI (XAI), considered within the domain of Natural Language Processing (NLP). We discuss the main categorization of explanations, as well as the various ways explanations can be arrived at and visualized. We detail the operations and explainability techniques currently available for generating explanations for NLP model predictions, to serve as a resource for model developers in the community. Finally, we point out the current gaps and encourage directions for future work in this important research area.
Network representation learning (NRL) is crucial in the area of graph learning. Recently, graph autoencoders and its variants have gained much attention and popularity among various types of node embedding approaches. Most existing graph autoencoder-based methods aim to minimize the reconstruction errors of the input network while not explicitly considering the semantic relatedness between nodes. In this paper, we propose a novel network embedding method which models the consistency across different views of networks. More specifically, we create a second view from the input network which captures the relation between nodes based on node content and enforce the latent representations from the two views to be consistent by incorporating a multiview adversarial regularization module. The experimental studies on benchmark datasets prove the effectiveness of this method, and demonstrate that our method compares favorably with the state-of-the-art algorithms on challenging tasks such as link prediction and node clustering. We also evaluate our method on a real-world application, i.e., 30-day unplanned ICU readmission prediction, and achieve promising results compared with several baseline methods.
Interpretability of predictive models is becoming increasingly important with growing adoption in the real-world. We present RuleNN, a neural network architecture for learning transparent models for sentence classification. The models are in the form of rules expressed in first-order logic, a dialect with well-defined, human-understandable semantics. More precisely, RuleNN learns linguistic expressions (LE) built on top of predicates extracted using shallow natural language understanding. Our experimental results show that RuleNN outperforms statistical relational learning and other neuro-symbolic methods, and performs comparably with black-box recurrent neural networks. Our user studies confirm that the learned LEs are explainable and capture domain semantics. Moreover, allowing domain experts to modify LEs and instill more domain knowledge leads to human-machine co-creation of models with better performance.
While the role of humans is increasingly recognized in machine learning community, representation of and interaction with models in current human-in-the-loop machine learning (HITL-ML) approaches are too low-level and far-removed from human’s conceptual models. We demonstrate HEIDL, a prototype HITL-ML system that exposes the machine-learned model through high-level, explainable linguistic expressions formed of predicates representing semantic structure of text. In HEIDL, human’s role is elevated from simply evaluating model predictions to interpreting and even updating the model logic directly by enabling interaction with rule predicates themselves. Raising the currency of interaction to such semantic levels calls for new interaction paradigms between humans and machines that result in improved productivity for text analytics model development process. Moreover, by involving humans in the process, the human-machine co-created models generalize better to unseen data as domain experts are able to instill their expertise by extrapolating from what has been learned by automated algorithms from few labelled data.